- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- + 抛物线中的定点、定值
- 抛物线中的直线过定点问题
- 抛物线中存在定点满足某条件问题
- 抛物线中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在平面直角坐标系
中,已知点
,抛物线
的焦点为
,设
为抛物线
上异于顶点的动点,直线
交抛物线
于另一点
,连结
,
,并延长,分别交抛物线
与点
,
.
(1)当
轴时,求直线
与
轴的交点的坐标;
(2)设直线
,
的斜率分别为
,
,试探索
是否为定值?若是,求出此定值;若不是,试说明理由.














(1)当



(2)设直线





已知抛物线
:
的焦点为
,直线
与
交于
,
两点,且与
轴交于点
.
(1)若直线
的斜率
,且
,求
的值;
(2)若
,
轴上是否存在点
,总有
?若存在,求出点
坐标;若不存在,请说明理由.









(1)若直线




(2)若





已知抛物线
:
的焦点为
,点
为
上异于顶点的任意一点,过
的直线
交
于另一点
,交
轴正半轴于点
,且有
,当点
的横坐标为3时,
为正三角形.
(1)求
的方程;
(2)若直线
,且
和
相切于点
,试问直线
是否过定点,若过定点,求出定点坐标;若不过定点,说明理由.














(1)求

(2)若直线





已知抛物线C:y2=2x的焦点为F,过焦点F的直线交抛物线于A,B两点,过A,B作准线的垂线交准线与P,Q两点.R是PQ的中点.
(1)证明:以PQ为直径的圆恒过定点F.
(2)证明:AR∥FQ.
(1)证明:以PQ为直径的圆恒过定点F.
(2)证明:AR∥FQ.
已知点F为抛物线C:y2=4x的焦点,过点F作斜率为k的直线l与抛物线交于A,B两点,与准线交于点P,设点D为抛物线准线与x轴的交点.

(1)若k=﹣1,求△DAB的面积;
(2)若
λ
,
μ
,证明:λ+μ为定值.

(1)若k=﹣1,求△DAB的面积;
(2)若




如图,已知抛物线C顶点在坐标原点,焦点F在Y轴的非负半轴上,点
是抛物线上的一点.

(1)求抛物线C的标准方程
(2)若点P,Q在抛物线C上,且抛物线C在点P,Q处的切线交于点S,记直线 MP,MQ的斜率分别为k1,k2,且满足
,当P,Q在C上运动时,△PQS的面积是否为定值?若是,求出△PQS的面积;若不是,请说明理由.


(1)求抛物线C的标准方程
(2)若点P,Q在抛物线C上,且抛物线C在点P,Q处的切线交于点S,记直线 MP,MQ的斜率分别为k1,k2,且满足

已知抛物线
,过动点
作抛物线的两条切线,切点分别为
,且
.
(1)求点
的轨迹方程;
(2)试问直线
是否恒过定点?若恒过定点,请求出定点坐标;若不恒过定点,请说明理由.




(1)求点

(2)试问直线
