- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- + 直线与圆锥曲线的位置关系
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
己知椭圆C:
的左右焦点分别为F1,F2,直线l:y=kx+m与椭圆C交于A,B两点.O为坐标原点.
(1)若直线l过点F1,且|AB|=
,求k的值;
(2)若以AB为直径的圆过原点O,试探究点O到直线AB的距离是否为定值?若是,求出该定值;若不是,请说明理由.

(1)若直线l过点F1,且|AB|=

(2)若以AB为直径的圆过原点O,试探究点O到直线AB的距离是否为定值?若是,求出该定值;若不是,请说明理由.
已知椭圆
的右焦点为
,坐标原点为
.椭圆
的动弦
过右焦点
且不垂直于坐标轴,
的中点为
,过
且垂直于线段
的直线交射线
于点
(I)证明:点
在直线
上;
(Ⅱ)当四边形
是平行四边形时,求
的面积.












(I)证明:点


(Ⅱ)当四边形


设椭圆
的左焦点为F,左顶点为A,已知
,其中O为坐标原点,e为椭圆的离心率.
求椭圆C的方程;
是否存在斜率为
的直线l,使得当直线l与椭圆C有两个不同交点M,N时,能在直线
上找到一点P,在椭圆C上找到一点Q,满足
?若存在,求出直线l的方程;若不存在,说明理由.







若点
在椭圆C上,则称点
为点M的一个“椭点”
已知直线
与椭圆C:
相交于A,B两点,且A,B两点的“椭点”分别为P,Q,以线段PQ为直径的圆经过坐标原点O,则m的值为______ .





已知椭圆
过点
,且其中一个焦点的坐标为
.
(1)求椭圆
的方程;
(2)过椭圆
右焦点
的直线
与椭圆交于两点
,在
轴上是否存在点
,使得
为定值?若存在,求出点
的坐标;若不存在,请说明理由.



(1)求椭圆

(2)过椭圆








已知椭圆方程为
,射线
与椭圆的交点为M,过M作倾斜角互补的两条直线,分别与椭圆交于A,B两点(异于M).
(1)求证:直线AB的斜率为定值;
(2)求
面积的最大值.


(1)求证:直线AB的斜率为定值;
(2)求

已知椭圆
:
过点
,且离心率为
.
(1)求椭圆
的标准方程;
(2)设过点为
的直线
与椭圆交于
两点,点
关于
轴的对称点为
(点
与点
不重合),证明:直线
恒过定点,并求该定点的坐标.




(1)求椭圆

(2)设过点为








