- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 抛物线的定义
- 抛物线标准方程的形式
- + 抛物线标准方程的求法
- 根据焦点或准线写出抛物线的标准方程
- 根据定义求抛物线的标准方程
- 根据抛物线上的点求标准方程
- 求抛物线的轨迹方程
- 求实际问题中的抛物线方程
- 抛物线的顶点、开口方向
- 抛物线的范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在底面半径和高均为
的圆锥中,
、
是底面圆
的两条互相垂直的直径,
是母线
的中点.已知过
与
的平面与圆锥侧面的交线是以
为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点
的距离等于( )












A.![]() | B.![]() | C.![]() | D.![]() |
如图所示,在直角坐标系
中,点
到抛物线
的准线的距离为
,点
是
上的定点,
、
是
上的两个动点,且线段
的中点
在线段
上.

(1)抛物线
的方程及
的值;
(2)当点
、
分别在第一、四象限时,求
的取值范围.













(1)抛物线


(2)当点



己知动点M与到点N(3,0)的距离比动点M到直线x=-2的距离大1,记动圆M的轨迹为曲线C.
(1)求曲线C的方程;
(2)若直线l与曲线C相交于A,B:两点,且
(O为坐标原点),证明直线l经过定点H,并求出H点的坐标.
(1)求曲线C的方程;
(2)若直线l与曲线C相交于A,B:两点,且

如图所示,抛物线关于
轴对称,它的顶点在坐标原点,点
,
,
均在抛物线上.

(1)写出该抛物线的方程及其准线方程;
(2)当
与
的斜率存在且倾斜角互补时,求
的值及直线
的斜率.





(1)写出该抛物线的方程及其准线方程;
(2)当



