- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 根据焦点或准线写出抛物线的标准方程
- + 根据定义求抛物线的标准方程
- 根据抛物线上的点求标准方程
- 求抛物线的轨迹方程
- 求实际问题中的抛物线方程
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线
的焦点为F,直线
与抛物线C相切于点P,过点P作抛物线C的割线PQ,割线PQ与抛物线C的另一交点为Q,A为PQ的中点.过A作y轴的垂线与y轴交于点H,与直线l相交于点N,M为线段AN的中点.
(1)求抛物线C的方程;
(2)在x轴上是否存在一点T,使得当割线PQ变化时,总有
为定值?若存在,求出该点的坐标;若不存在,请说明理由.


(1)求抛物线C的方程;
(2)在x轴上是否存在一点T,使得当割线PQ变化时,总有

已知抛物线
的焦点为
,点
在抛物线
上.
(1)求点
的坐标和抛物线
的准线方程;
(2)过点
的直线
与抛物线
交于
两个不同点,若
的中点为
,求
的面积.




(1)求点


(2)过点







抛物线C:y2=2px(p>0)的焦点是F,直线y=2与抛物线C的交点到F的距离等于2.
(1)求抛物线C的方程;
(2)过点(2,0)斜率为k的直线l交抛物线C于A、B两点,O为坐标原点,直线AO与直线x=﹣2相交于点P,求证:BP∥x轴.
(1)求抛物线C的方程;
(2)过点(2,0)斜率为k的直线l交抛物线C于A、B两点,O为坐标原点,直线AO与直线x=﹣2相交于点P,求证:BP∥x轴.
如图抛物线
的焦点为
,
为抛物线上一点(
在
轴上方),
,
点到
轴的距离为4.

(1)求抛物线方程及点
的坐标;
(2)是否存在
轴上的一个点
,过点
有两条直线
,满足
,
交抛物线
于
两点.
与抛物线相切于点
(
不为坐标原点),有
成立,若存在,求出点
的坐标.若不存在,请说明理由.









(1)求抛物线方程及点

(2)是否存在













如图,已知抛物线
的焦点是
,准线是
,抛物线上任意一点
到
轴的距离比到准线的距离少2.

(1)写出焦点
的坐标和准线
的方程;
(2)已知点
,若过点
的直线交抛物线
于不同的两点
(均与
不重合),直线
分别交
于点
,求证:
.






(1)写出焦点


(2)已知点








