刷题首页
题库
高中数学
题干
如图所示,在直角坐标系
中,点
到抛物线
的准线的距离为
,点
是
上的定点,
、
是
上的两个动点,且线段
的中点
在线段
上.
(1)抛物线
的方程及
的值;
(2)当点
、
分别在第一、四象限时,求
的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-14 04:51:07
答案(点此获取答案解析)
同类题1
过抛物线
的焦点
且斜率为
的直线交抛物线
于
,
两点,且
.
(1)求
的值;
(2)抛物线
上一点
,直线
(其中
)与抛物线
交于
,
两个不同的点(均与点
不重合),设直线
,
的斜率分别为
,
,
.动点
在直线
上,且满足
,其中
为坐标原点.当线段
最长时,求直线
的方程.
同类题2
(本小题满分14分)
已知抛物线
的焦点为
,
为
上异于原点的任意一点,过点
的直线
交
于另一点
,交
轴的正半轴于点
,且有
.当点
的横坐标为
时,
为正三角形.
(Ⅰ)求
的方程;
(Ⅱ)若直线
,且
和
有且只有一个公共点
,
(ⅰ)证明直线
过定点,并求出定点坐标;
(ⅱ)
的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.
同类题3
已知抛物线
的焦点为
,过
的直线交抛物线于
,
两点
(1)若以
,
为直径的圆的方程为
,求抛物线
的标准方程;
(2)过
,
分别作抛物线的切线
,
,证明:
,
的交点在定直线上.
同类题4
在平面直角坐标系
中,设点
是抛物线
上的一点,以抛物线的焦点
为圆心、以
为半径的圆交抛物线的准线于
,
两点,记
,若
,且
的面积为
,则实数
的值为( )
A.
B.
C.
D.
同类题5
已知抛物线x
2
=-2py(p>0)上纵坐标为-p的点到其焦点F的距离为3.
(1)求抛物线的方程;
(2)若直线l与抛物线以及圆x
2
+(y-1)
2
=1都相切,求直线l的方程.
相关知识点
平面解析几何
圆锥曲线
抛物线
抛物线标准方程的求法
根据定义求抛物线的标准方程
抛物线中的参数范围问题