刷题首页
题库
高中数学
题干
如图所示,在直角坐标系
中,点
到抛物线
的准线的距离为
,点
是
上的定点,
、
是
上的两个动点,且线段
的中点
在线段
上.
(1)抛物线
的方程及
的值;
(2)当点
、
分别在第一、四象限时,求
的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-14 04:51:07
答案(点此获取答案解析)
同类题1
在平面直角坐标系
中,已知抛物线
上的点
到焦点
的距离为2.
(1)求抛物线的方程;
(2)如图,点
是抛物线上异于原点的点,抛物线在点
处的切线与
轴相交于点
,直线
与抛物线相交于
两点,求
面积的最小值.
同类题2
已知抛物线
,其中
.点
在
的焦点
的右侧,且
到
的准线的距离是
与
距离的3倍.经过点
的直线与抛物线
交于不同的
两点,直线
与直线
交于点
,经过点
且与直线
垂直的直线
交
轴于点
.
(1)求抛物线的方程和
的坐标;
(2)判断直线
与直线
的位置关系,并说明理由.
同类题3
如图,已知抛物线
的焦点是
,准线是
,抛物线上任意一点
到
轴的距离比到准线的距离少2.
(1)写出焦点
的坐标和准线
的方程;
(2)已知点
,若过点
的直线交抛物线
于不同的两点
(均与
不重合),直线
分别交
于点
,求证:
.
同类题4
如图,过抛物线
的焦点
的直线
交抛物线于点
,
,交其准线于点
,若
且
,则此抛物线的方程为___________________.
同类题5
已知抛物线
:
上横坐标为4的点到焦点的距离为5.
(1)求抛物线
的方程;
(2)设直线
与抛物线
交于两点
、
,且
,
是弦
中点,过
作平行于
轴的直线交抛物线
于点
,得到
,再分别过弦
、
的中点作平行于
轴的直线依次交抛物线
于点
、
,得到
和
,按此方法继续下去,解决下列问题:
①求证:
;
②计算
的面积
;
③根据
的面积
的计算结果,写出
、
的面积,请设计一种求抛物线
与线段
所围成封闭图形面积的方法,并求此封闭图形的面积.
相关知识点
平面解析几何
圆锥曲线
抛物线
抛物线标准方程的求法
根据定义求抛物线的标准方程
抛物线中的参数范围问题