- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 抛物线的定义
- 抛物线标准方程的形式
- + 抛物线标准方程的求法
- 根据焦点或准线写出抛物线的标准方程
- 根据定义求抛物线的标准方程
- 根据抛物线上的点求标准方程
- 求抛物线的轨迹方程
- 求实际问题中的抛物线方程
- 抛物线的顶点、开口方向
- 抛物线的范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线
的焦点为F,经过点F的直线与抛物线C交于不同的两点A,B,
的最小值为4.
(1)求抛物线C的方程;
(2)已知P,Q是抛物线C上不同的两点,若直线
恰好垂直平分线段PQ,求实数k 的取值范围.


(1)求抛物线C的方程;
(2)已知P,Q是抛物线C上不同的两点,若直线

已知抛物线
的焦点为F,点P为抛物线C上一点,
,O为坐标原点,
.
(1)求抛物线C的方程;
(2)设Q为抛物线C的准线上一点,过点F且垂直于OQ的直线交抛物线C于A,B两点记
,
的面积分别为
,求
的取值范围.



(1)求抛物线C的方程;
(2)设Q为抛物线C的准线上一点,过点F且垂直于OQ的直线交抛物线C于A,B两点记





已知直线
与抛物线
:
交于
,
两点,且
的面积为16(
为坐标原点).
(1)求
的方程;
(2)直线
经过
的焦点
且
不与
轴垂直,与
交于
,
两点,若线段
的垂直平分线与
轴交于点
,证明:
为定值.







(1)求

(2)直线












已知抛物线
上一点
到焦点F的距离
.
(1)求抛物线C的方程;
(2)设直线l与抛物C交于A,B两点(A,B异于点P),且
,试判断直线l是否过定点?若过定点,求出该定点的坐标;若不过定点,请说明理由.



(1)求抛物线C的方程;
(2)设直线l与抛物C交于A,B两点(A,B异于点P),且
