- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 抛物线的定义
- 抛物线标准方程的形式
- + 抛物线标准方程的求法
- 根据焦点或准线写出抛物线的标准方程
- 根据定义求抛物线的标准方程
- 根据抛物线上的点求标准方程
- 求抛物线的轨迹方程
- 求实际问题中的抛物线方程
- 抛物线的顶点、开口方向
- 抛物线的范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线C:
的焦点为F,直线
与
轴的交点为P,与C的交点为Q,且
.
(Ⅰ)求C的方程;
(Ⅱ)点
在抛物线C上,是否存在直线
与C交于点
,使得△
是以
为斜边的直角三角形?若存在,求出直线
的方程;若不存在说明理由.




(Ⅰ)求C的方程;
(Ⅱ)点






已知抛物线
:
的焦点为
,点
为抛物线
上一点,
,且
(
为坐标原点).
(1)求抛物线
的方程;
(2)过点
的直线
与抛物线
交于
,
两点,求
面积的最小值.








(1)求抛物线

(2)过点






已知直线
与抛物线
交于O和E两点,
.
(1)求抛物线C的方程;
(2)过点
的直线交抛物线C于A、B两点,P为
上一点,PA、PB与x轴相交于M、N两点,问M、N两点的横坐标的乘积
是否为定值?如果是定值,求出该定值,否则说明理由.



(1)求抛物线C的方程;
(2)过点



已知抛物线
的焦点为F,点P为抛物线C上一点,
,O为坐标原点,
的面积为1.
(1)求抛物线C的方程;
(2)设Q为抛物线C的准线上一点,过点F且垂直于OQ的直线交C于A,B两点,记
,
的面积分别为
,求
的取值范围.



(1)求抛物线C的方程;
(2)设Q为抛物线C的准线上一点,过点F且垂直于OQ的直线交C于A,B两点,记





已知抛物线
,
是
上两点,且两点横坐标之和为4,直线
的斜率为2.
(1)求曲线
的方程;
(2)设
是曲线
上一点,曲线
在
点处的切线与直线
平行,且
,求直线
的方程.




(1)求曲线

(2)设







已知抛物线
的焦点
恰好是椭圆
的右焦点.
(1)求实数
的值及抛物线
的准线方程;
(2)过点
任作两条互相垂直的直线分别交抛物线
于
、
和
、
点,求两条弦的弦长之和
的最小值.



(1)求实数


(2)过点







已知点A(-2,3)在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为( )
A.![]() | B. ![]() | C. ![]() | D. ![]() |