- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 抛物线的定义
- 抛物线标准方程的形式
- + 抛物线标准方程的求法
- 根据焦点或准线写出抛物线的标准方程
- 根据定义求抛物线的标准方程
- 根据抛物线上的点求标准方程
- 求抛物线的轨迹方程
- 求实际问题中的抛物线方程
- 抛物线的顶点、开口方向
- 抛物线的范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线
上一点A(2,a)到其焦点的距离为3.
(1) 求抛物线C的方程;
(2) 过点(4,0)的直线与抛物线C交于P、Q两点,0为坐标原点,证明: ∠POQ=90°.

(1) 求抛物线C的方程;
(2) 过点(4,0)的直线与抛物线C交于P、Q两点,0为坐标原点,证明: ∠POQ=90°.
如图,过抛物线
上一点
,作两条直线分别交抛物线于
,
,当
与
的斜率存在且倾斜角互补时:

(Ⅰ)求
的值;
(Ⅱ)若直线
在
轴上的截距
时,求
面积
的最大值.







(Ⅰ)求

(Ⅱ)若直线





如图圆锥PO,轴截面PAB是边长为2的等边三角形,过底面圆心O作平行于母线PA的平面,与圆锥侧面的交线是以E为顶点的抛物线的一部分,则该抛物线的焦点到其顶点E的距离为( )


A.1 | B.![]() | C.![]() | D.![]() |