- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 椭圆的定义
- 椭圆定义及辨析
- 利用椭圆定义求方程
- 椭圆上点到焦点的距离及最值
- 椭圆上的点到坐标轴上的点的距离及最值
- 椭圆中焦点三角形的周长问题
- 椭圆上点到焦点和定点距离的和、差最值
- 椭圆的标准方程
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线 C
(Ⅰ)求C的方程;
(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.
(Ⅰ)求C的方程;
(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.
已知圆
,点
,点
在圆
运动,
垂直平分线交
于点
.
(I) 求动点
的轨迹
的方程;
(II) 设
是曲线
上的两个不同点,且点
在第一象限,点
在第三象限,
若
,
为坐标原点,求直线
的斜率
;
(III) 过点
且斜率为
的动直线
交曲线
于
两点,在
轴上是否存在定点
,使以
为直径的圆恒过这个点?若存在,求出
的坐标,若不存在,说明理由.







(I) 求动点


(II) 设




若




(III) 过点









已知A(1,1)是椭圆
上一点,F1、F2是椭圆的两个焦点,且满足|AF1|+|AF2|=4.
(I)求椭圆方程;
(Ⅱ)设C,D是椭圆上任两点,且直线AC,AD的斜率分别为
,若存在常数
使
,求直线CD的斜率.

(I)求椭圆方程;
(Ⅱ)设C,D是椭圆上任两点,且直线AC,AD的斜率分别为



设
分别为直角坐标系中与
轴、
轴正半轴同方向的单位向量,若向量
且
.
(Ⅰ)求点
的轨迹
的方程;
(Ⅱ)设抛物线
的顶点为
,焦点为
.直线
过点
与曲线
交于
两点,是否存在这样的直线
,使得以
为直径的圆过点
,若存在,求出直线方程;若不存在,请说明理由?






(Ⅰ)求点


(Ⅱ)设抛物线










已知圆
,圆
,动圆
与圆
外切并与圆
内切,圆心
的轨迹为曲线
.
(1)求
的方程;
(2)若直线
与曲线
交于
两点,问是否在
轴上存在一点
,使得当
变动时总有
?若存在,请说明理由.







(1)求

(2)若直线







(本小题满分12分)已知椭圆
的左、右焦点分别为
、
,过
的直线l与椭圆C相交于A,B两点,且△
的周长为
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点
作与直线l平行的直线m,且直线m与抛物线
交于P、Q两点,若A、P在x轴
上方,直线PA与直线QB相交于x轴上一点M,求直线l的方程.






(Ⅰ)求椭圆C的方程;
(Ⅱ)过点


上方,直线PA与直线QB相交于x轴上一点M,求直线l的方程.
已知向量
,
为坐标原点,动点
满足:
.
(1)求动点
的轨迹
的方程;
(2)已知直线
都过点
,且
,
与轨迹
分别交于点
,试探究是否存在这样的直线?使得
是等腰直角三角形.若存在,指出这样的直线共有几组(无需求出直线的方程);若不存在,请说明理由.




(1)求动点


(2)已知直线







在平面直角坐标系中,N为圆C:


(Ⅰ)求动点P表示的曲线E的方程;
(Ⅱ)若曲线E与x轴的交点为





已知椭圆
的离心率为
,四个顶点构成的菱形的面积是4,圆
过椭圆
的上顶点
作圆
的两条切线分别与椭圆
相交于
两点(不同于点
),直线
的斜率分别为
.
(1)求椭圆
的方程;
(2)当
变化时,①求
的值;②试问直线
是否过某个定点?若是,求出该定点;若不是,请说明理由.











(1)求椭圆

(2)当



已知右焦点为
的椭圆
关于直线
对称的图形过坐标原点.
(1)求椭圆
的方程;
(2)过点
且不垂直于
轴的直线与椭圆
交于两点
,点
关于
轴的对称点为
.证明:直线
与
轴的交点为
.



(1)求椭圆

(2)过点









