- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 椭圆的定义
- 椭圆定义及辨析
- 利用椭圆定义求方程
- 椭圆上点到焦点的距离及最值
- 椭圆上的点到坐标轴上的点的距离及最值
- 椭圆中焦点三角形的周长问题
- 椭圆上点到焦点和定点距离的和、差最值
- 椭圆的标准方程
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆的左焦点为
,有一质点A从
处以速度v开始沿直线运动,经椭圆内壁反射
无论经过几次反射速率始终保持不变
,若质点第一次回到
时,它所用的最长时间是最短时间的7倍,则椭圆的离心率e为








A.![]() | B.![]() | C.![]() | D.![]() |
已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为
,
,且两条曲线在第一象限的交点为
,若
是以
为底边的等腰三角形.椭圆与双曲线的离心率分别为
,
,则
的取值范围是( )








A.![]() | B.![]() | C.![]() | D.![]() |
椭圆C:
+
=1(a>b>0)的长轴长、短轴长和焦距成等差数列,若点P为椭圆C上的任意一点,且P在第一象限,O为坐标原点,F(3,0)为椭圆C的右焦点,则
•
的取值范围为( )




A.![]() | B.![]() | C.![]() | D.![]() |
若椭圆
:
与椭圆
:
满足
,则称这两个椭圆相似,
叫相似比.若椭圆
与椭圆
相似且过
点.
(I)求椭圆
的标准方程;
(II)过点
作斜率不为零的直线
与椭圆
交于不同两点
、
,
为椭圆
的右焦点,直线
、
分别交椭圆
于点
、
,设
,
,求
的取值范围.









(I)求椭圆

(II)过点















设椭圆
(a>b>0)的左、右焦点分别为
、
,其焦距为2
,点Q(
,
)在椭圆内部,点P是椭圆上动点,且|PF1|+|PQ|<6|F1F2|恒成立.则椭圆离心率的取值范围是__________.





