- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 椭圆的定义
- 椭圆定义及辨析
- 利用椭圆定义求方程
- 椭圆上点到焦点的距离及最值
- 椭圆上的点到坐标轴上的点的距离及最值
- 椭圆中焦点三角形的周长问题
- 椭圆上点到焦点和定点距离的和、差最值
- 椭圆的标准方程
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在椭圆
上任取一点
(
不为长轴端点),连结
、
,并延长与椭圆
分别交于点
、
两点,已知
的周长为8,
面积的最大值为
.
(1)求椭圆
的方程;
(2)设坐标原点为
,当
不是椭圆的顶点时,直线
和直线
的斜率之积是否为定值?若是定值,请求出这个定值;若不是定值,请说明理由.











(1)求椭圆

(2)设坐标原点为




双曲线
与椭圆
有相同的焦点,且左、右焦点分别为
,它们在第一象限的交点为
,若
,且椭圆与双曲线的离心率互为倒数,则该双曲线的离心率为____________.




