- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- + 椭圆
- 椭圆的定义
- 椭圆的标准方程
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知圆
与椭圆
相交于点M(0,1),N(0,-1),且椭圆的离心率为
.

(1)求
的值和椭圆C的方程;
(2)过点M的直线
交圆O和椭圆C分别于A,B两点.
①若
,求直线
的方程;
②设直线NA的斜率为
,直线NB的斜率为
,问:
是否为定值? 如果是,求出定值;如果不是,说明理由.




(1)求

(2)过点M的直线

①若


②设直线NA的斜率为



椭圆b2x2+a2y2=a2b2(a>b>0)的两个焦点分别是F1、F2,等边三角形的边AF1、AF2与该椭圆分别相交于B、C两点,且2|BC|=|F1F2|,则该椭圆的离心率等于( )
A.![]() | B.![]() | C.![]() | D.![]() |
已知椭圆C:
1(a>b>0)的离心率为
,短轴一个端点到右焦点的距离为3
.
(1)求椭圆C的方程;
(2)若直线y=x﹣1与椭圆C交于不同的两点A、B,求|AB|.



(1)求椭圆C的方程;
(2)若直线y=x﹣1与椭圆C交于不同的两点A、B,求|AB|.
(1)求一个焦点为F(2,0),且经过点A(3,0)的椭圆的标准方程.
(2)已知双曲线的焦点在x轴,渐近线方程为y
x,且过点(3,
),求双曲线的标准方程.
(2)已知双曲线的焦点在x轴,渐近线方程为y


当ab<0时,方程ay2﹣ax2﹣b=0所表示的曲线是( )
A.焦点在x轴的椭圆 | B.焦点在x轴的双曲线 |
C.焦点在y轴的椭圆 | D.焦点在y轴的双曲线 |