- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- + 椭圆
- 椭圆的定义
- 椭圆的标准方程
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
对于椭圆
,若点
满足
,则称该点在椭圆内,在平面直角坐标系中,若点A在过点
的任意椭圆内或椭圆上,则满足条件的点A构成的图形为( )




A.三角形及其内部 | B.矩形及其内部 | C.圆及其内部 | D.椭圆及其内部 |
设点
,
分别是椭园C:
的左、右焦点,且椭圆C上的点到
的距离的最小值为
,点M,N是椭圆C上位于x轴上方的两点,且向量
与向量
平行.
求椭圆C的方程;
当
时,求
的面积;
当
时,求直线
的方程.














已知椭圆
(
)的一个焦点坐标为
,点
在
上.
(1)求
的方程;
(2)直线
不经过原点
,且不平行于坐标轴,
与
有两个交点
、
,线段
中点为
,证明:直线
的斜率与直线
的斜率乘积为定值.





(1)求

(2)直线









