- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- + 椭圆
- 椭圆的定义
- 椭圆的标准方程
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,
分别是椭圆
的左、右焦点,且焦距为
,动弦
平行于
轴,且
.

(1)求椭圆
的方程;
(2)若点
是椭圆
上异于点
、
的任意一点,且直线
、
分别与
轴交于点
、
,若
、
的斜率分别为
、
,求证:
是定值.







(1)求椭圆

(2)若点














如图,已知椭圆
的长轴
,长为4,过椭圆的右焦点
作斜率为
(
)的直线交椭圆于
、
两点,直线
,
的斜率之积为
.

(1)求椭圆
的方程;
(2)已知直线
,直线
,
分别与
相交于
、
两点,设
为线段
的中点,求证:
.











(1)求椭圆

(2)已知直线









设A是圆O:x2+y2=16上的任意一点,l是过点A且与x轴垂直的直线,B是直线l与x轴的交点,点Q在直线l上,且满足4|BQ|=3|BA|.当点A在圆O上运动时,记点Q的轨迹为曲线C.
(1)求曲线C的方程;
(2)已知直线y=kx﹣2(k≠0)与曲线C交于M,N两点,点M关于y轴的对称点为M′,设P(0,﹣2),证明:直线M′N过定点,并求△PM′N面积的最大值.
(1)求曲线C的方程;
(2)已知直线y=kx﹣2(k≠0)与曲线C交于M,N两点,点M关于y轴的对称点为M′,设P(0,﹣2),证明:直线M′N过定点,并求△PM′N面积的最大值.
已知椭圆
:
的左、右焦点分别为
,
,上顶点为
,离心率为
,且
的面积为
.
(1)求椭圆
的方程;
(2)过点
的直线
与椭圆
交于
,
两点,且点
,
位于
轴的同侧,设直线
与
轴交于点
,
,若
,求直线
的方程.








(1)求椭圆

(2)过点













