刷题首页
题库
高中数学
题干
已知椭圆
(
)的一个焦点坐标为
,点
在
上.
(1)求
的方程;
(2)直线
不经过原点
,且不平行于坐标轴,
与
有两个交点
、
,线段
中点为
,证明:直线
的斜率与直线
的斜率乘积为定值.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-11 07:11:56
答案(点此获取答案解析)
同类题1
椭圆
的离心率为
而且过点
,其长轴的左右端点分别为
,
,直线
交椭圆于
,
两点.
(1)求椭圆的标准方程;
(2)设直线
,
的斜率分别为
,
,若
,求
的值.
同类题2
已知椭圆
C
:
,其右焦点为
,点
在椭圆上,且满足
,则椭圆方程为( )
A.
B.
C.
D.
同类题3
(题文)(题文)已知点
在椭圆
上,椭圆离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过椭圆
右焦点
的直线
与椭圆交于两点
、
,在
轴上是否存在点
,使得
为定值?若存在,求出点
的坐标;若不存在,请说明理由.
同类题4
已知椭圆
的左右焦点分别为
,离心率为
;圆
过椭圆
的三个顶点.过点
且斜率不为0的直线
与椭圆
交于
两点.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)证明:在
轴上存在定点
,使得
为定值;并求出该定点的坐标.
同类题5
已知椭圆
经过点
,其左焦点
的坐标为
.过
的直线交椭圆于
两点.
(1)求椭圆的方程;
(2)当线段
的中点的横坐标为
时,求直线
的方程.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
椭圆中的定值问题