- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- + 椭圆
- 椭圆的定义
- 椭圆的标准方程
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
椭圆
(
)的离心率是
,点
在短轴
上,且
.
(1)求椭圆
的方程;
(2)设
为坐标原点,过点
的动直线与椭圆交于
两点,是否存在常数
,使得
为定值?若存在,求
的值;若不存在,请说明理由






(1)求椭圆

(2)设






已知椭圆
:
的左右焦点分别为
,
,左顶点为
,点
在椭圆
上,且
的面积为
.
(1)求椭圆
的方程;
(2)过原点
且与
轴不重合的直线交椭圆
于
,
两点,直线
分别与
轴交于点
,
,.求证:以
为直径的圆恒过交点
,
,并求出
面积的取值范围.









(1)求椭圆

(2)过原点













设
分别是椭圆
的左、右焦点,过
且斜率不为零的直线
与椭圆
交于
两点,
的周长为
(1)求椭圆
的方程
(2)是否存在直线
,使得
为等腰直角三角形?若存在,求出直线的方程;若不存在,请说明理由








(1)求椭圆

(2)是否存在直线

