刷题首页
题库
高中数学
题干
已知椭圆
:
的左右焦点分别为
,
,左顶点为
,点
在椭圆
上,且
的面积为
.
(1)求椭圆
的方程;
(2)过原点
且与
轴不重合的直线交椭圆
于
,
两点,直线
分别与
轴交于点
,
,.求证:以
为直径的圆恒过交点
,
,并求出
面积的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-11 04:51:56
答案(点此获取答案解析)
同类题1
设椭圆
的离心率是
,过点
的动直线
于椭圆相交于
两点,当直线
平行于
轴时,直线
被椭圆
截得弦长为
.
(Ⅰ)求
的方程;
(Ⅱ)在
上是否存在与点
不同的定点
,使得直线
和
的倾斜角互补?若存在,求
的坐标;若不存在,说明理由.
同类题2
已知椭圆
(
)的左、右焦点分别为
、
,设点
,在
中,
,周长为
.
(1)求椭圆
的方程;
(2)设不经过点
的直线
与椭圆
相交于
、
两点,若直线
与
的斜率之和为
,求证:直线
过定点,并求出该定点的坐标;
(3)记第(2)问所求的定点为
,点
为椭圆
上的一个动点,试根据
面积
的不同取值范围,讨论
存在的个数,并说明理由.
同类题3
已知椭圆:
的右焦点为
点的坐标为
,
为坐标原点,
是等腰直角三角形.
(1)求椭圆
的方程;
(2)经过点
作直线
交椭圆
于
两点,求
面积的最大值;
(3)是否存在直线
交椭圆于
两点,使点
为
的垂心(垂心:三角形三边高线的交点)?若存在,求出直线
的方程;若不存在,请说明理由.
同类题4
椭圆
的焦距是( )
A.
B.
C.
D.
同类题5
已知椭圆
经过点
,其离心率为
.
(1)求椭圆
的方程;
(2)若不经过点
的直线
与椭圆
相交于
两点,且
,证明:直线
经过定点.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程