刷题首页
题库
高中数学
题干
设椭圆
的一个顶点与抛物线
的焦点重合,
、
分别是椭圆
的左、右焦点,其离心率
椭圆
右焦点
的直线
与椭圆
交于
、
两点.
(1)求椭圆
的方程;
(2)是否存在直线
,使得
?若存在,求出直线
的方程;若不存在,说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-05 05:21:54
答案(点此获取答案解析)
同类题1
已知椭圆
:
的左、右焦点分别为
,
是椭圆
上的点,且
的面积为
.
(1)求椭圆
的方程;
(2)若斜率为
且在
轴上的截距为
的直线
与椭圆
相交于两点
,若椭圆
上存在点
,满足
,其中
是坐标原点,求
的值.
同类题2
已知椭圆C的中心在坐标原点,焦点在x轴上,离心率等于
,它的一个顶点恰好是抛物线x
2
=4y的焦点,则椭圆C的标准方程为
_
.
同类题3
已知椭圆
的左、右焦点分别为
、
.经过点
且倾斜角为
的直线
与椭圆
交于
、
两点(其中点
在
轴上方),
的周长为8.
(1)求椭圆
的标准方程;
(2)如图,把平面
沿
轴折起来,使
轴正半轴和
轴确定的半平面,与
负半轴和
轴所确定的半平面互相垂直.
①若
,求异面直线
和
所成角的大小;
②若折叠后
的周长为
,求
的大小.
同类题4
设椭圆
:
的左右焦点分别为
,
,上顶点为
.
(Ⅰ)若
.
(
i
)求椭圆
的离心率;
(
ii
)设直线
与椭圆
的另一个交点为
,若
的面积为
,求椭圆
的标准方程;
(Ⅱ)由椭圆
上不同三点构成的三角形称为椭圆的内接三角形,当
时,若以
为直角顶点的椭圆
的内接等腰直角三角形恰有3个,求实数
的取值范围.
同类题5
已知
为椭圆
的右焦点,过椭圆长轴上一点
(不含端点)任意作一条直线
,交椭圆于
两点,且
(
为椭圆左焦点)周长的最大值为
.
(1)求椭圆的标准方程;
(2)过点
作与
轴不重合的直线
和该椭圆交于
两点,椭圆的左顶点为
,且
两直线分别与直线
交于
两点,若
的斜率分别为
,试问
是否为定值?若是,求出定值;若不是,请说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程