- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 数列的概念
- + 递增数列与递减数列
- 判断数列的增减性
- 确定数列中的最大(小)项
- 有穷数列和无穷数列
- 递推数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
若数列
,
满足
,则称
为数列
的“偏差数列”.
(1)若
为常数列,且为
的“偏差数列”,试判断
是否一定为等差数列,并说明理由;
(2)若无穷数列
是各项均为正整数的等比数列,且
,
为数列
的“偏差数列”,求
的值;
(3)设
,
为数列
的“偏差数列”,
,
且
若
对任意
恒成立,求实数
的最小值.





(1)若



(2)若无穷数列





(3)设









设
为等差数列
的公差,数列
的前
项和
,满足
(
),且
,若实数
(
,
),则称
具有性质
.
(1)请判断
、
是否具有性质
,并说明理由;
(2)设
为数列
的前
项和,若
是单调递增数列,求证:对任意的
(
,
),实数
都不具有性质
;
(3)设
是数列
的前
项和,若对任意的
,
都具有性质
,求所有满足条件的
的值.













(1)请判断



(2)设









(3)设







已知点
、
、
、
(
),都在函数
(
,
)的图像上;
(1)若数列
是等差数列,求证:数列
是等比数列;
(2)设
,函数
的反函数为
,若函数
与函数
的图像有公共点
,求证:
在直线
上;
(3)设
,
(
),过点
、
的直线
与两坐标轴围成的三角形面积为
,问:数列
是否存在最大项?若存在,求出最大项的值,若不存在,请说明理由;








(1)若数列


(2)设








(3)设








已知数列
满足
,其中
.
(1)若数列前四项
,
,
,
依次成等差数列,求
,
的值;
(2)若
,且数列
为等比数列,求
的值;
(3)若
,且
是数列
的最小项,求
的取值范围.



(1)若数列前四项






(2)若



(3)若




数列
中,
,
,数列
满足
.
(1)求数列
中的前四项;
(2)求证:数列
是等差数列;
(3)若
,试判断数列
是否有最小项,若有最小项,求出最小项.





(1)求数列

(2)求证:数列

(3)若


设数列
满足
,
,
.
(1)求证:数列
为等比数列;
(2)对于大于
的正整数
、
(其中
),若
、
、
三个数经适当排序后能构成等差数列,求符合条件的数组
;
(3)若数列
满足
,是否存在实数
,使得数列
是单调递增数列?若存在,求出
的取值范围;若不存在,说明理由.




(1)求证:数列

(2)对于大于








(3)若数列





已知数列{an}满足a1=a>2,an=
(n≥2,n∈N*).
(1)求证:对任意n∈N*,an>2恒成立;
(2)判断数列{an}的单调性,并说明你的理由;
(3)设Sn为数列{an}的前n项和,求证:当a=3时,Sn<2n+
.

(1)求证:对任意n∈N*,an>2恒成立;
(2)判断数列{an}的单调性,并说明你的理由;
(3)设Sn为数列{an}的前n项和,求证:当a=3时,Sn<2n+
