- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 数列的概念
- + 递增数列与递减数列
- 判断数列的增减性
- 确定数列中的最大(小)项
- 有穷数列和无穷数列
- 递推数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
若数列
满足
,且
,则
①数列
是等比数列;
②满足不等式:
③若函数
在R上单调递减,则数列
是单调递减数列;
④存在数列
中的连续三项,能组成三角形的三条边;
⑤满足等式:
.
正确的序号是________



①数列

②满足不等式:

③若函数


④存在数列

⑤满足等式:

正确的序号是________
已知数列
的前
项和为
,且满足
,
,设
,
.
(Ⅰ)求证:数列
是等比数列;
(Ⅱ)若
,
,求实数
的最小值;
(Ⅲ)当
时,给出一个新数列
,其中
,设这个新数列的前
项和为
,若
可以写成
(
,
且
,
)的形式,则称
为“指数型和”.问
中的项是否存在“指数型和”,若存在,求出所有“指数型和”;若不存在,请说明理由.







(Ⅰ)求证:数列

(Ⅱ)若



(Ⅲ)当












