- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 数列的概念
- + 递增数列与递减数列
- 判断数列的增减性
- 确定数列中的最大(小)项
- 有穷数列和无穷数列
- 递推数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知数列
中,
,
是数列
的前
项和,且
.
(1)求
,
,并求数列
的通项公式
;
(2)设
,数列
的前
项和为
,若
对任意的正整数
都成立,求实数
的取值范围.






(1)求




(2)设







定义
个数
的“倒均值”
.
(1)若数列
的前
项,
的“倒均值”
. 求
的通项公式
(2)在(1)的条件下,令
,试研究数列
的单调性,并给出证明.
(3)在(2)的条件下,设函数
,对于数列
,是否存在实数
,使得当
时,
对任意
恒成立?若存在,求出在最小的实数
,若不存在,说明理由.



(1)若数列





(2)在(1)的条件下,令


(3)在(2)的条件下,设函数







已知等比数列
的前n项和为
,且当
时,
是
与2m的等差中项
为实数
.
(1)求m的值及数列
的通项公式;
(2)令
,是否存在正整数k,使得
对任意正整数n均成立?若存在,求出k的最大值;若不存在,说明理由.







(1)求m的值及数列

(2)令


已知函数
(
为常数,
且
),且数列
是首项为
,公差为
的等差数列.
(1)求证:数列
是等比数列;
(2)若
,当
时,求数列
的前
项和
的最小值;
(3)若
,问是否存在实数
,使得
是递增数列?若存在,求出
的范围;若不存在,说明理由.







(1)求证:数列

(2)若





(3)若




我们称一个数列是“有趣数列”,当且仅当该数列满足以下两个条件:
①所有的奇数项满足
,所有的偶数项满足
;
②任意相邻的两项
,
满足
.
根据上面的信息完成下面的问题:
(i)数列
__________“有趣数列”(填“是”或者“不是”);
(ii)若
,则数列
__________“有趣数列”(填“是”或者“不是”).
①所有的奇数项满足


②任意相邻的两项




根据上面的信息完成下面的问题:
(i)数列

(ii)若

