- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 数列的概念
- + 递增数列与递减数列
- 判断数列的增减性
- 确定数列中的最大(小)项
- 有穷数列和无穷数列
- 递推数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知数列
满足
,给出下列命题:
①当
时,数列
为递减数列
②当
时,数列
不一定有最大项
③当
时,数列
为递减数列
④当
为正整数时,数列
必有两项相等的最大项
请写出正确的命题的序号____


①当


②当


③当


④当


请写出正确的命题的序号____
在等比数列{an}中,首项为
,公比为
,
表示其前n项和.
(I)记
=A,
= B,
= C,证明A,B,C成等比数列;
(II)若
,
,记数列
的前n项和为
,当n取何值时,
有最小值.



(I)记



(II)若





已知在直角坐标系中,
,其中数列{an},{bn}都是递增数列.
(1)若an=2n+1,bn=3n+1,判断直线A1B1与A2B2是否平行;
(2)若数列{an},{bn}都是正项等差数列,设四边形AnBnBn+1An+1的面积为Sn(n∈N*),求证:{Sn}也是等差数列;
(3)若
12,记直线AnBn的斜率为kn,数列{kn}的前8项依次递减,求满足条件的数列{bn}的个数.

(1)若an=2n+1,bn=3n+1,判断直线A1B1与A2B2是否平行;
(2)若数列{an},{bn}都是正项等差数列,设四边形AnBnBn+1An+1的面积为Sn(n∈N*),求证:{Sn}也是等差数列;
(3)若

设各项均为正数的数列






数列.
(1)求数列

(2)令



求实数

已知数列{an}的前n项和sn满足
(a>0,且a≠1).数列{bn}满足bn=an•lgan
(1)求数列{an}的通项.
(2)若对一切n∈N+都有bn<bn+1,求a的取值范围.

(1)求数列{an}的通项.
(2)若对一切n∈N+都有bn<bn+1,求a的取值范围.