- 集合与常用逻辑用语
- 函数与导数
- 利用导数证明不等式
- 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- + 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知二次函数
及函数
,函数
在
处取得极值.
(Ⅰ)求
所满足的关系式;
(Ⅱ)是否存在实数
,使得对(Ⅰ)中任意的实数
,直线
与函数
在
上的图像恒有公共点?若存在,求出
的取值范围,若不存在,请说明理由.




(Ⅰ)求

(Ⅱ)是否存在实数






已知函数
,现给出下列结论:
①
有极小值,但无最小值
②
有极大值,但无最大值
③若方程
恰有一个实数根,则
④若方程
恰有三个不同实数根,则
其中所有正确结论的序号为____

①

②

③若方程


④若方程


其中所有正确结论的序号为____
已知函数f(x)=x3+ax2+b(a,b∈R).
(1) 试讨论f(x)的单调性;
(2) 若b=c-a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(-∞,-3)∪
,求c的值.
(1) 试讨论f(x)的单调性;
(2) 若b=c-a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(-∞,-3)∪

已知函数f(x)=a·ex+x2-bx(a,b∈R,e=2.718 28…是自然对数的底数),其导函数为y=f′(x).
(1) 设a=-1,若函数y=f(x)在R上是单调减函数,求b的取值范围;
(2) 设b=0,若函数y=f(x)在R上有且只有一个零点,求a的取值范围;
(3) 设b=2,且a≠0,点(m,n)(m,n∈R)是曲线y=f(x)上的一个定点,是否存在实数x0(x0≠m),使得f(x0)=f′
(x0-m)+n成立?证明你的结论
(1) 设a=-1,若函数y=f(x)在R上是单调减函数,求b的取值范围;
(2) 设b=0,若函数y=f(x)在R上有且只有一个零点,求a的取值范围;
(3) 设b=2,且a≠0,点(m,n)(m,n∈R)是曲线y=f(x)上的一个定点,是否存在实数x0(x0≠m),使得f(x0)=f′
