- 集合与常用逻辑用语
- 函数与导数
- 利用导数证明不等式
- + 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
.
(1)若
对
恒成立,求实数
的取值集合;
(2)在函数
的图象上取定点
,记直线AB的斜率为
,证明:存在
,使
成立;
(3)当
时,证明:
.

(1)若



(2)在函数





(3)当


已知函数
处的切线与直线
垂直.
(1)求函数
为f(x)的导函数)的单调递增区间;
(2)记函数
是函数
的两个极值点,若
恒成立,求实数k的最大值.


(1)求函数

(2)记函数


