- 集合与常用逻辑用语
- 函数与导数
- 利用导数证明不等式
- + 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知
,
. 对于函数
、
,若存在常数
,
,使得
,不等式
都成立,则称直线是
函数
与
的分界线.
(1)讨论函数
的单调性;
(2)当
时,试探究函数
与
是否存在“分界线”?若存在,求出分界线方程;若不存在说明理由.











(1)讨论函数

(2)当


