- 集合与常用逻辑用语
- 函数与导数
- 利用导数证明不等式
- + 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数f(x)=x2+b图象上的点P(2,1)关于直线y=x的对称点Q在函数g(x)=lnx+a上.
(Ⅰ)求函数h(x)=g(x)-f(x)的最大值;
(Ⅱ)对任意x1∈[1,e],x2∈
,是否存在实数k,使得不等式
成立,若存在,请求出实数k的取值范围;若不存在,请说明理由.
(Ⅰ)求函数h(x)=g(x)-f(x)的最大值;
(Ⅱ)对任意x1∈[1,e],x2∈


已知函数f(x)=(2x+b)ex,F(x)=bx-ln x,b∈R.
(1)若b<0,且存在区间M,使f(x)和F(x)在区间M上具有相同的单调性,求实数b的取值范围;
(2)若F(x+1)>b对任意x∈(0,+∞)恒成立,求实数b的取值范围.
(1)若b<0,且存在区间M,使f(x)和F(x)在区间M上具有相同的单调性,求实数b的取值范围;
(2)若F(x+1)>b对任意x∈(0,+∞)恒成立,求实数b的取值范围.
已知函数
是定义在
上的奇函数,当
时,
,给出下列命题:
① 当
时,
;
② 函数
的单调递减区间是
;
③ 对
,都有
.
其中正确的命题是




① 当


② 函数


③ 对


其中正确的命题是
A.①② | B.②③ | C.①③ | D.② |