- 集合与常用逻辑用语
- 函数与导数
- + 导数在函数中的其他应用
- 利用导数证明不等式
- 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 利用导数解决实际应用问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
.
(Ⅰ)若函数
在定义域内为增函数,求实数
的取值范围;
(Ⅱ)设
,若函数
存在两个零点
,且满足
,问:函数
在
处的切线能否平行于
轴?若能,求出该切线方程;若不能,请说明理由.

(Ⅰ)若函数


(Ⅱ)设







已知函数
,
在
上为增函数,且
,求解下列各题:
(1)求
的取值范围;
(2)若
在
上为单调增函数,求
的取值范围;
(3)设
,若在
上至少存在一个
,使得
成立,求
的取值范围.




(1)求

(2)若



(3)设





(本题满分14分)已知函数
,(其中常数
)
(1)当
时,求
的极大值;
(2)试讨论
在区间
上的单调性;
(3)当
时,曲线
上总存在相异两点
、
,使得曲线
在点
、
处的切线互相平行,求
的取值范围.


(1)当


(2)试讨论


(3)当








设函数
,其中
.(Ⅰ)若
,求
在
上的最小值;
(Ⅱ)如果
在定义域内既有极大值又有极小值,求实数
的取值范围;
(Ⅲ)是否存在最小的正整数
,使得当
时,不等式
恒成立.





(Ⅱ)如果


(Ⅲ)是否存在最小的正整数



设函数
.
(Ⅰ)当
时,求曲线
在
处的切线方程;
(Ⅱ)当
时,求函数
的单调区间;
(Ⅲ)在(Ⅱ)的条件下,设函数
,若对于
,
,使
成立,求实数
的取值范围.

(Ⅰ)当



(Ⅱ)当


(Ⅲ)在(Ⅱ)的条件下,设函数




