- 集合与常用逻辑用语
- 函数与导数
- 导数在函数中的其他应用
- + 利用导数解决实际应用问题
- 利润最大问题
- 面积、体积最大问题
- 成本最小问题
- 用料最省问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一工厂计划生产某种当地政府控制产量的特殊产品,月固定成本为1万元,设此工厂一个月内生产该特殊产品
万件并全部销售完.根据当地政府要求产量
满足
,每生产
件需要再投入
万元,每1万件的销售收入为
(万元),且每生产1万件产品政府给予补助
(万元).(注:月利润=月销售收入+月政府补助-月总成本).
(1)写出月利润
(万元)关于月产量
(万件)的函数解析式;
(2)求该工厂在生产这种特殊产品中所获得的月利润最大值(万元)及此时的月生产量(万件)







(1)写出月利润


(2)求该工厂在生产这种特殊产品中所获得的月利润最大值(万元)及此时的月生产量(万件)
某工厂打算设计一种容积为2m3的密闭容器用于贮藏原料,容器的形状是如图所示的直四棱柱,其底面是边长为x米的正方形,假设该容器的底面及侧壁的厚度均可忽略不计.

(1)请你确定x的值,使得该容器的外表面积最小;
(2)若该容器全部由某种每平方米价格为100元的材料做成,且制作该容器仅需将购置的材料做成符合需要的矩形,这些矩形即是直四棱柱形容器的上下底面和侧面(假设这一过程中产生的费用和材料损耗可忽略不计),再将这些上下底面和侧面的边缘进行焊接即可做成该容器,焊接费用是每米500元,试确定x的值,使得生产每个该种容器的成本(即原料购置成本+焊接费用)最低.

(1)请你确定x的值,使得该容器的外表面积最小;
(2)若该容器全部由某种每平方米价格为100元的材料做成,且制作该容器仅需将购置的材料做成符合需要的矩形,这些矩形即是直四棱柱形容器的上下底面和侧面(假设这一过程中产生的费用和材料损耗可忽略不计),再将这些上下底面和侧面的边缘进行焊接即可做成该容器,焊接费用是每米500元,试确定x的值,使得生产每个该种容器的成本(即原料购置成本+焊接费用)最低.
过函数
的图象
上一点
作倾斜角互补的两条直线,分别与
交与异于
的
,
两点.
(1)求证:直线
的斜率为定值;
(2)如果
,
两点的横坐标均不大于0,求
面积的最大值.







(1)求证:直线

(2)如果



由于近几年我国多地区的雾霾天气,引起口罩热销,某厂家拟在2017年举行促销活动,经调查该批口罩销售量
万件(生产量与销售量相等)与促销费用
万元满足
(其中
,
为常数).已知生产该批口罩还要投入成本
万元(不包含促销费用),口罩的销售价格定为
元/件.
(1)将该批口罩的利润
万元表示为促销费用
万元的函数;
(2)当促销费用投入多少万元时,该厂家的利润最大?







(1)将该批口罩的利润


(2)当促销费用投入多少万元时,该厂家的利润最大?
已知直角三角形
两直角边长之和为3,将
绕其中一条直角边旋转一周,所形成旋转体体积的最大值为__________,此时该旋转体外接球的表面积为___________.


为响应“生产发展、生活富裕、乡风文明、村容整洁、管理民主”的社会主义新农村建设,某自然村将村边一块废弃的扇形荒地(如图)租给蜂农养蜂、产蜜与售蜜.已知扇形AOB中,
,
(百米),荒地内规划修建两条直路AB,OC,其中点C在
上(C与A,B不重合),在小路AB与OC的交点D处设立售蜜点,图中阴影部分为蜂巢区,空白部分为蜂源植物生长区.设
,蜂巢区的面积为S(平方百米).

(1)求S关于
的函数关系式;
(2)当
为何值时,蜂巢区的面积S最小,并求此时S的最小值.





(1)求S关于

(2)当

如图1所示为一种魔豆吊灯,图2为该吊灯的框架结构图,由正六棱锥
和
构成,两个棱锥的侧棱长均相等,且棱锥底面外接圆的直径为
,底面中心为
,通过连接线及吸盘固定在天花板上,使棱锥的底面呈水平状态,下顶点
与天花板的距离为
,所有的连接线都用特殊的金属条制成,设金属条的总长为y.

(1)设∠O1AO =
(rad),将y表示成θ的函数关系式,并写出θ的范围;
(2)请你设计θ,当角θ正弦值的大小是多少时,金属条总长y最小.







(1)设∠O1AO =


(2)请你设计θ,当角θ正弦值的大小是多少时,金属条总长y最小.
某游乐场过山车轨道在同一竖直钢架平面内,如图所示,矩形
的长
为130米,宽
为120米,圆弧形轨道所在圆的圆心为0,圆O与
,
,
分别相切于点A,D,C、T为
的中点.现欲设计过山车轨道,轨道由五段连接而成:出发点N在线段
上(不含端点,游客从点Q处乘升降电梯至点N),轨道第一段
与圆O相切于点M,再沿着圆孤轨道
到达最高点A,然后在点A处沿垂直轨道急速下降至点O处,接着沿直线轨道
滑行至地面点G处(设计要求M,O,G三点共线),最后通过制动装置减速沿水平轨道
滑行到达终点R记
为
,轨道总长度为l米.

(1)试将l表示为
的函数
,并写出
的取值范围;
(2)求l最小时
的值.















(1)试将l表示为



(2)求l最小时
