- 集合与常用逻辑用语
- 函数与导数
- + 导数在函数中的其他应用
- 利用导数证明不等式
- 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 利用导数解决实际应用问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
,且
.
(1)判断
的奇偶性并说明理由;
(2)判断
在区间
上的单调性,并证明你的结论;
(3)若在区间
上,不等式
恒成立,试确定实数
的取值范围.


(1)判断

(2)判断


(3)若在区间



已知函数
,
.

(Ⅰ)若曲线
在
与
处的切线相互平行,求
的值及切线斜率;
(Ⅱ)若函数
在区间
上单调递减,求
的取值范围;
(Ⅲ)设函数
的图像C1与函数
的图像C2交于P、Q两点,过线段PQ的中点作x轴的垂线分别交C1、C2于点M、N,证明:C1在点M处的切线与C2在点N处的切线不可能平行.



(Ⅰ)若曲线




(Ⅱ)若函数



(Ⅲ)设函数


(本小题满分12分)
已知函数
(
,
),
.
(Ⅰ)证明:当
时,对于任意不相等的两个正实数
、
,均有
成立;
(Ⅱ)记
,
(ⅰ)若
在
上单调递增,求实数
的取值范围;
(ⅱ)证明:
.
已知函数




(Ⅰ)证明:当




(Ⅱ)记

(ⅰ)若



(ⅱ)证明:

(本小题满分13分)
已知
,
,
,…,
.
(Ⅰ)请写出的
表达式(不需证明);
(Ⅱ)求
的极小值
;
(Ⅲ)设
,
的最大值为
,
的最小值为
,试求
的最小值.
已知




(Ⅰ)请写出的

(Ⅱ)求


(Ⅲ)设






已知函数
,
,其中
且
.
(Ⅰ) 当
,求函数
的单调递增区间;
(Ⅱ)若
时,函数
有极值,求函数
图象的对称中心的坐标;
(Ⅲ)设函数
(
是自然对数的底数),是否存在a使
在
上为减函数,若存在,求实数a的范围;若不存在,请说明理由.




(Ⅰ) 当


(Ⅱ)若



(Ⅲ)设函数



