- 集合与常用逻辑用语
- 函数与导数
- + 导数在函数中的其他应用
- 利用导数证明不等式
- 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 利用导数解决实际应用问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数f(x)是定义在R上的奇函数,f′(x)为f(x)的导函数,且满足当x<0时,有xf′(x)﹣f(x)<0,则不等式f(x)﹣xf(1)>0的解集为( )
A.(﹣1,0)∪(1,+∞) | B.(﹣∞,0)∪(0,1) |
C.(﹣∞,﹣1)∪(1,+∞) | D.(﹣1,0)∪(0,1) |
若存在两个不相等正实数x,y,使得等式x+a(y-2ex)·(ln y-ln x)=0成立,其中e为自然对数的底数,则实数a的取值范围是( )
A.![]() | B.![]() |
C.![]() | D.(-∞,0) |
已知函数f(x)=lnx
(b∈R),g(x)
.
(1)讨论函数f(x)的单调性
(2)是否存在实数b使得函数y=f(x)在x∈(
,+∞)上的图象存在函数y=g(x)的图象上方的点?若存在,请求出最小整数b的值,若不存在,请说明理由.(参考数据ln2=0.6931,
1.6487)


(1)讨论函数f(x)的单调性
(2)是否存在实数b使得函数y=f(x)在x∈(


已知函数f0(x)=
(x>0),设fn(x)为fn-1(x)的导数,n∈N*.

(1)求2f1+
f2
的值;
(2)证明:对任意的n∈N*,等式=
都成立.