刷题首页
题库
高中数学
题干
正五边形
的对角线
分别与对角线
、
交于点
、
,对角线
分别与对角线
、
交于点
、
,对角线
与对角线
交于点
. 设由图2中的10个点
、
、
、
、
、
、
、
、
、
和线段构成的等腰三角形的集合为
.
(1)求
中元素的数目;
(2)若将这10个点中的每个点任意染为红、蓝两种颜色之一,问是否一定存在
中的一个等腰三角形,其三个顶点同色?
(3)若将这10个点中的任意
个点染为红色,使得一定存在
中的一个等腰三角形,其三个顶点同为红色,求
的最小值.
上一题
下一题
0.99难度 解答题 更新时间:2019-02-12 10:23:06
答案(点此获取答案解析)
同类题1
将圆的一组
等分点分别涂上红色或蓝色,从任意一点开始,按逆时针方向依次记录
个点的颜色,称为该圆的一个“
阶色序”,当且仅当两个
阶色序对应位置上的颜色至少有一个不相同时,称为不同的
阶色序.若某圆的任意两个“3阶色序”均不相同,则该圆中等分点的个数最多可有______个.
同类题2
篮球场上有5名球员在练球,其战术是:由甲开始发球,经过6次传球跑动后(中途每人的传接球机会均等)回到甲,由甲投3分球.其不同的传球方式有( )种.
A.4100
B.1024
C.820
D.976
同类题3
将
棋盘的每个方格都随意染黑白两色之一,每次操作是将其中同行、同列、同对角线的连续五个方格改变成相反的颜色.试问:能否经过有限次操作,使得所有方格的颜色都变成与原先相反的颜色?
同类题4
圆周上分布着2014个点,将其任意染成红、黄两色.若从某一点开始,依任一方向绕圆周运动到任一位置,所经过的点(含自身)红点个数恒大于黄点个数,则称该点为“优点”.为确保圆周上至少有一个优点,求圆周上黄点个数的最大值.
同类题5
在平面直角坐标系中,有互不重合的水平直线和垂直直线共25条,将其染为黑、红两种颜色之一.再将黑色水平直线与黑色垂直直线的交点染为黑色;红色水平直线与红色垂直直线的交点染为红色;黑色水平直线与红色垂直直线的交点染为黄色;红色水平直线与黑色垂直直线的交点染为绿色.若黑、红点个数之比为
,则黄、绿点个数之比为______.
相关知识点
竞赛知识点
排列组合
组合问题
图论
染色与拉姆塞问题
抽屉原理