- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 类比推理概念辨析
- 圆锥曲线中的类比推理
- 等差、等比数列中的类比推理
- + 平面与空间中的类比
- 运算法则的类比
- 解题方法的类比
- 其他类比
- 合情推理概念辨析
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知
的三边长为
,内切圆半径为
(用
表示
的面积),则
;类比这一结论有:若三棱锥
的内切球半径为
,则三棱锥体积
___________________________.










在平面几何中,正三角形
的内切圆半径为
,外接圆半径为
,则
,推广到空间可以得到类似结论:已知正四面体
的内切球半径为
,外接球半径为
,则
__________.








如图,在梯形
中,
.若
,
到
与
的距离之比为
,则可推算出:
试用类比的方法,推想出下述问题的结果.在
上面的梯形
中,延长梯形两腰
相交于
点,设
,
的面积分别为
,
且
到
与
的距离之比为
,则
的面积
与
的关系是( )









上面的梯形















A.![]() | B.![]() |
C.![]() | D.![]() |
已知
中,
于
,三边分别是
,则有
;类比上述结论,写出下列条件下的结论:四面体
中,
、
、
、
的面积分别是
,二面角
、
、
的度数分别是
,则
__________.
















如图所示,在△ABC中,a=b·cos C+c·cos B,其中a,b,c分别为角A,B,C的对边,在四面体PABC中,S1,S2,S3,S分别表示△PAB,△PBC,△PCA,△ABC的面积,α,β,γ依次表示面PAB,面PBC,面PCA与底面ABC所成二面角的大小.写出对四面体性质的猜想,并证明你的结论



设△ABC的三边长分别为a,b,c,△ABC的面积为S,内切圆半径为r,则
,类比这个结论可知:四面体S—ABC的四个面的面积分别为S1,S2,S3,S4,内切球半径为R,四面体S—ABC的体积为V,则R等于()

A.![]() | B.![]() |
C.![]() | D.![]() |
如图所示,在三棱锥S﹣ABC中,SA⊥SB,SB⊥SC,SC⊥SA,且SA,SB,SC和底面ABC所成的角分别为α1,α2,α3,△SBC,△SAC,△SAB的面积分别为S1,S2,S3,类比三角形中的正弦定理,给出空间图形的一个猜想是_________________.

设△ABC的三边长分别为a,b,c,△ABC的面积为S,内切圆半径为r,则
,类比这个结论可知:四面体S—ABC的四个面的面积分别为S1,S2,S3,S4,内切球半径为R,四面体S—ABC的体积为V,则R等于()

A.![]() | B.![]() |
C.![]() | D.![]() |
我国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一直角边为股,斜边为弦.若a,b,c为直角三角形的三边,其中c为斜边,则a2+b2=c2,称这个定理为勾股定理.现将这一定理推广到立体几何中:在四面体O-ABC中,∠AOB=∠BOC=∠COA=90°,S为顶点O所对面的面积,S1,S2,S3分别为侧面△OAB,△OAC,△OBC的面积,则下列选项中对于S,S1,S2,S3满足的关系描述正确的为( )
A.S2=S![]() ![]() ![]() | B.![]() |
C.S=S1+S2+S3 | D.![]() |