- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 类比推理概念辨析
- 圆锥曲线中的类比推理
- 等差、等比数列中的类比推理
- + 平面与空间中的类比
- 运算法则的类比
- 解题方法的类比
- 其他类比
- 合情推理概念辨析
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
对于命题:如果
是线段
上一点,则
;将它类比到平面的情形是:若
是△
内一点,有
;将它类比到空间的情形应该是:若
是四面体
内一点,则有__________________________.








对命题“正三角形的内切圆切于三边的中点”可类比猜想出:四面都为正三角形的正四面体的内切球切于四个面的什么位置?
A.正三角形的顶点 | B.正三角形的中心 | C.正三角形各边的中点 | D.无法确定 |
类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列性质,你认为比较恰当的是 ( )
①各棱长相等,同一顶点上的任意两条棱的夹角都相等;
②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;
③各个面都是全等的正三角形,同一顶点上的任意两条棱的夹角都相等.
①各棱长相等,同一顶点上的任意两条棱的夹角都相等;
②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;
③各个面都是全等的正三角形,同一顶点上的任意两条棱的夹角都相等.
A.① | B.③ | C.①② | D..①②③ |
我国南北朝时期的数学家祖暅提出体积的计算原理(祖暅原理):“幂势既同,则积不容异”.“势”即是高,“幂”是面积.意思是:如果两等高的几何体在同高处截得两几何体的截面积恒等,那么这两个几何体的体积相等.类比祖暅原理,如图所示,在平面直角坐标系中,图1是一个形状不规则的封闭图形,图2是一个上底为1的梯形,且当实数
取
上的任意值时,直线
被图1和图2所截得的两线段长始终相等,则图1的面积为 ___________ .




如图1,在
中,
,
,
是垂足,则
,该结论称为射影定理.如图2,在三棱锥
中,
平面
,
平面
,
为垂足,且
在
内,类比射影定理,可以得到结论:__________.














已知正三角形
的边长是
,若
是
内任意一点,那么
到三角形三边的距离之和是定值
.这是平面几何中一个命题,其证明常采用“面积法”.如图,设
到三边的距离分别是
、
、
,则
,
为正三角形
的高
,即
.运用类比法猜想,对于空间正四面体,存在什么类似结论,并用“体积法”证明.

















在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按图所标边长,由勾股定理有
.设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下一个三条侧棱两两垂直的三棱锥
,如果用
,
,
表示三个侧面面积,
表示截面面积,那么类比得到的结论是( )








A.![]() | B.![]() |
C.![]() | D.![]() |
三角形面积为
,
,
,
为三角形三边长,
为三角形内切圆半径,利用类比推理,可以得出四面体的体积为( )





A.![]() |
B.![]() |
C.![]() ![]() |
D.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |