刷题首页
题库
高中数学
题干
已知
的三边长为
,内切圆半径为
(用
表示
的面积),则
;类比这一结论有:若三棱锥
的内切球半径为
,则三棱锥体积
___________________________.
上一题
下一题
0.99难度 填空题 更新时间:2013-05-21 10:07:40
答案(点此获取答案解析)
同类题1
在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按图所标边长,由勾股定理有
.设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下一个三条侧棱两两垂直的三棱锥
,如果用
,
,
表示三个侧面面积,
表示截面面积,那么类比得到的结论是( )
A.
B.
C.
D.
同类题2
二维空间中圆的一维测度(周长)
,二维测度(面积)
,观察发现
;三维空间球的二维测度(表面积)
,三维测度(体积)
,观察发现
.则由四维空间中“超球”的三维测度
,猜想其四维测度
( )
A.
B.
C.
D.
同类题3
我们把平面几何里相似的概念推广到空间:如果两个几何体大小不一定相等,但形状完全相同,就称它们是相似体,给出下面的几何体:
①两个球体;②两个长方体;③两个正四面体;④两个正三棱柱;⑤两个正四棱锥,则一定是相似体的个数是( )
A.4
B.2
C.3
D.1
同类题4
在平面几何中有如下结论:正三角形
的内切圆面积为
,外接圆面积为
,则
,推广到空间可以得到类似结论:已知正四面体
的内切球体积为
,外接球体积为
,则
____
.
同类题5
我国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一直角边为股,斜边为弦.若
为直角三角形的三边,其中
为斜边,则
,称这个定理为勾股定理.现将这一定理推广到立体几何中:
在四面体
中,
,
为顶点
所对面的面积,
分别为侧面
的面积,则下列选项中对于
满足的关系描述正确的为( )
A.
B.
C.
D.
相关知识点
推理与证明
合情推理与演绎推理
类比推理
平面与空间中的类比