刷题首页
题库
高中数学
题干
如图所示,在三棱锥S﹣ABC中,SA⊥SB,SB⊥SC,SC⊥SA,且SA,SB,SC和底面ABC所成的角分别为α
1
,α
2
,α
3
,△SBC,△SAC,△SAB的面积分别为S
1
,S
2
,S
3
,类比三角形中的正弦定理,给出空间图形的一个猜想是_________________.
上一题
下一题
0.99难度 填空题 更新时间:2017-12-31 07:54:56
答案(点此获取答案解析)
同类题1
已知正三角形
的边长是
,若
是
内任意一点,那么
到三角形三边的距离之和是定值
.若把该结论推广到空间,则有:在棱长都等于
的正四面体
中,若
是正四面体内任意一点,那么
到正四面体各面的距离之和等于( )
A.
B.
C.
D.
同类题2
点
到直线
的距离公式为
,通过类比的方法,可求得:在空间中,点
到平面
的距离为__________.
同类题3
若三角形内切圆的半径为
,三边长为
,则三角形的面积等于
,根据类比推理的方法,若一个四面体的内切球的半径为
,四个面的面积分别是
,则四面体的体积
_____.
同类题4
命题:在三角形中,顶点与对边中点连线所得三线段交于一点,且分线段长度比为
,类比可得在四面体中,顶点与所对面重心的连线所得四线段交于一点,且分线段比为( )
A.
B.
C.
D.
同类题5
在平面几何中有如下结论:正三角形
的内切圆面积为
,外接圆面积为
,则
,推广到空间中可以得到类似结论:已知正四面体
的内切球体积为
,外接球体积为
,则为
( )
A.
B.
C.
D.
相关知识点
推理与证明
合情推理与演绎推理
类比推理
平面与空间中的类比