- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 类比推理概念辨析
- 圆锥曲线中的类比推理
- 等差、等比数列中的类比推理
- + 平面与空间中的类比
- 运算法则的类比
- 解题方法的类比
- 其他类比
- 合情推理概念辨析
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在平面几何中:在△ABC中,∠C的内角平分线CE分AB所成线段的比为
.把这个结论类比到空间:在三棱锥ABCD中(如图),平面DEC平分二面角ACDB且与AB相交于E,则得到类比的结论是________.

二维空间中圆的一维测度(周长)
,二维测度(面积)
,观察发现
;三维空间中球的二维测度(表面积)
,三维测度(体积)
,观察发现
.已知四维空间中“超球”的三维测度
,猜想其四维测度
________.








已知命题:平面上一矩形ABCD的对角线AC与边AB、AD所成的角分别为
、
(如图1),则
.用类比的方法,把它推广到空间长方体中,试写出相应的一个真命题并证明.






下面使用类比推理正确的是( )
A.由“a(b+c)=ab+ac”类比推出“cos(α+β)=cosα+cosβ” |
B.由“若3a<3b,则a<b”类比推出“若ac<bc,则a<b” |
C.由“平面中垂直于同一直线的两直线平行”类比推出“空间中垂直于同一平面的两平面平行” |
D.由“等差数列{an}中,若a10=0,则a1+a2+…+an=a1+a2+…+a19-n(n<19,n∈N*)”类比推出“在等比数列{bn}中,若b9=1,则有b1b2…bn=b1b2…b17-n(n<17,n∈N*)” |
下列类比推理中,得到的结论正确的是( )
A.把loga(x+y)与a(b+c)类比,则有loga(x+y)=logax+logby |
B.向量![]() ![]() ![]() ![]() ![]() ![]() |
C.把(a+b)n与(ab)n类比,则有(a+b)n=an+bn |
D.把长方体与长方形类比,则有长方体的对角线平方等于长宽高的平方和 |
已知“正三角形的内切圆与三边相切,切点是各边的中点”,类比之可以猜想:正四面体的内切球与各面相切,切点是( )
A.各面内某边的中点 | B.各面内某条中线的中点 |
C.各面内某条高的三等分点 | D.各面内某条角平分线的四等分点 |
在△ABC中,射影定理可表示为a=b·cosC+c·cosB.其中a,b,c分别为角A,B,C的对边,类比上述定理.写出对空间四面体性质的猜想.
类比平面几何中的命题:“垂直于同一直线的两条直线平行”,在立体几何中,可以得到命题“__________”,这个类比命题的真假性是__________.