刷题首页
题库
高中数学
题干
如图所示,在△ABC中,a=b·cos C+c·cos B,其中a,b,c分别为角A,B,C的对边,在四面体PABC中,S
1
,S
2
,S
3
,S分别表示△PAB,△PBC,△PCA,△ABC的面积,α,β,γ依次表示面PAB,面PBC,面PCA与底面ABC所成二面角的大小.写出对四面体性质的猜想,并证明你的结论
上一题
下一题
0.99难度 解答题 更新时间:2017-12-31 07:54:59
答案(点此获取答案解析)
同类题1
不难证明:一个边长为
,面积为
的正三角形的内切圆半径
,由此类比到空间,若一个正四面体的一个面的面积为
,体积为
,则其内切球的半径为_____________.
同类题2
(1)在平面上,若两个正方形的边长的比为
,则它们的面积比为
.类似地,在空间中,对应的结论是什么?
(2)已知数列
满足
,求
,并由此归纳得出
的通项公式(无需证明).
同类题3
已知
O
是△
ABC
内任意一点,连接
AO
,
BO
,
CO
并延长,分别交对边于
A
′,
B
′,
C
′,则
,这是一道平面几何题,其证明常采用“面积法”:
请运用类比思想猜想,对于空间中的四面体
V
BCD
,存在什么类似的结论,并用“体积法”证明.
同类题4
由“直角三角形两直角边的长分别为
,将其补成一个矩形,则根据矩形的对角线可求得该直角三角形外接圆的半径
”,对于“若三棱锥三条侧棱两两互相垂直,侧棱长分别为
”,类比上述的处理方法,可得三棱锥的外接球半径______.
同类题5
在平面上,设
是三角形
三条边上的高.
P
为三角形内任一点,
P
到相应三边的距离分别为
,我们可以得到结论:
试通过类比,写出在空间中的类似结论____________________________.
相关知识点
推理与证明
合情推理与演绎推理
类比推理
平面与空间中的类比
综合法证明