- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 归纳推理
- + 类比推理
- 类比推理概念辨析
- 圆锥曲线中的类比推理
- 等差、等比数列中的类比推理
- 平面与空间中的类比
- 运算法则的类比
- 解题方法的类比
- 其他类比
- 合情推理概念辨析
- 演绎推理
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
二维空间中圆的一维测度(周长)
,二维测度(面积)
,观察发现
;三维空间球的二维测度(表面积)
,三维测度(体积)
,观察发现
.则由四维空间中“超球”的三维测度
,猜想其四维测度
( )








A.![]() | B.![]() | C.![]() | D.![]() |
三角形的三个顶点的坐标分别为
,
,
,则该三角形的重心(三边中线交点)的坐标为
.类比这个结论,连接四面体的一个顶点及其对面三角形重心的线段称为四面体的中线,四面体的四条中线交于一点,该点称为四面体的重心.若四面体的四个顶点的空间坐标分别为
,
,
,
,则该四面体的重心的坐标为( )








A.![]() |
B.![]() |
C.![]() |
D.![]() |
已知命题:“在平面内,周长一定的曲线围成的封闭图形中,圆的面积最大”,类比上述结论,可得到空间中的相关结论为___________。
类比平面几何中的勾股定理:若直角三角形
中的两边
,
互相垂直,则三角形三边长之间满足关系:
.若三棱锥
的三个侧面
,
,
两两互相垂直,则三棱锥的三个侧面积
,
,
与底面积
之间满足的关系为________.












我国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一直角边为股,斜边为弦.若
为直角三角形的三边,其中
为斜边,则
,称这个定理为勾股定理.现将这一定理推广到立体几何中:
在四面体
中,
,
为顶点
所对面的面积,
分别为侧面
的面积,则下列选项中对于
满足的关系描述正确的为( )



在四面体







A.![]() | B.![]() |
C.![]() | D.![]() |
平面内直角三角形两直角边长分别为
,则斜边长为
,直角顶点到斜边的距离为
.空间中三棱锥的三条侧棱两两垂直,三个侧面的面积分别为
,
,
,类比推理可得底面积为
,则三棱锥顶点到底面的距离为( )







A.![]() | B.![]() | C.![]() | D.![]() |
我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周盒体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式
中“…”即代表无限次重复,但原式却是个定值,它可以通过方程
,求得
,类似上述过程,则
=( )




A.![]() | B.![]() |
C.![]() | D.![]() |