刷题首页
题库
高中数学
题干
类比平面几何中的勾股定理:若直角三角形
中的两边
,
互相垂直,则三角形三边长之间满足关系:
.若三棱锥
的三个侧面
,
,
两两互相垂直,则三棱锥的三个侧面积
,
,
与底面积
之间满足的关系为________.
上一题
下一题
0.99难度 填空题 更新时间:2019-02-04 09:38:08
答案(点此获取答案解析)
同类题1
我国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一直角边为股,斜边为弦.若
a
,
b
,
c
为直角三角形的三边,其中
c
为斜边,则
a
2
+
b
2
=
c
2
,称这个定理为勾股定理.现将这一定理推广到立体几何中:在四面体
O
-
ABC
中,∠
AOB
=∠
BOC
=∠
COA
=90°,
S
为顶点
O
所对面的面积,
S
1
,
S
2
,
S
3
分别为侧面△
OAB
,△
OAC
,△
OBC
的面积,则下列选项中对于
S
,
S
1
,
S
2
,
S
3
满足的关系描述正确的为( )
A.
S
2
=
S
+
S
+
S
B.
C.
S
=
S
1
+
S
2
+
S
3
D.
同类题2
在平面几何里有射影定理:设三角形ABC的两边AB⊥AC,D是A点在BC上的射影,则AB
2
=BD•BC.拓展到空间,在四面体A-BCD中,AD⊥面ABC,点O是A在面BCD内的射影,且O在△BCD内,类比平面三角形射影定理,得出正确的结论是( )
A.
B.
C.
C.
同类题3
命题:在三角形中,顶点与对边中点连线所得三线段交于一点,且分线段长度比为
,类比可得在四面体中,顶点与所对面重心的连线所得四线段交于一点,且分线段比为( )
A.
B.
C.
D.
同类题4
六个面都是平行四边形的四棱柱称为平行六面体.如图(1),在平行四边形
中,有
,那么在图(2)的平行六面体
中有
等于()
A.
B.
C.
D.
同类题5
如图,在
中,
于点
,
于点
,则有
,类似地有命题:如图(2),在三棱锥
中,
面ABC,若
在
内的射影为
,则
,那么上述命题( )
A.是真命题
B.增加条件“
”后才是真命题
C.是假命题
D.增加条件“三棱锥
是正三棱锥”后才是真命题
相关知识点
推理与证明
合情推理与演绎推理
类比推理
平面与空间中的类比