刷题首页
题库
高中数学
题干
我们知道:在平面内,点
到直线
的距离公式为
.通过类比的方法,可求得在空间中,点
到平面
的距离为( )
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2019-05-08 10:09:59
答案(点此获取答案解析)
同类题1
在平面内,点
到直线
的距离公式为
,通过类比的方法,可求得在空间中,点
到平面
的距离为( )
A.
B.
C.
D.
同类题2
直线与圆相切时,圆心与切点连线与直线垂直,由类比推理可知,平面与球相切时的结论为_____________________________________________ .
同类题3
我国齐梁时代的数学家祖暅提出了一条原理:“幂势既同,则积不容异”.意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.椭球体是椭圆绕其轴旋转所成的旋转体.如图,将底面直径都为
,高皆为
的椭半球体和已被挖去了圆锥体的圆柱放置于同一平面
上,用平行于平面
且与平面
任意距离
处的平面截这两个几何体,可横截得到
及
两截面.可以证明
总成立.据此,半短轴长为1,半长轴长为3的椭球体的体积是_______.
同类题4
我国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一直角边为股,斜边为弦.若
a
,
b
,
c
为直角三角形的三边,其中
c
为斜边,则
a
2
+
b
2
=
c
2
,称这个定理为勾股定理.现将这一定理推广到立体几何中:在四面体
O
-
ABC
中,∠
AOB
=∠
BOC
=∠
COA
=90°,
S
为顶点
O
所对面的面积,
S
1
,
S
2
,
S
3
分别为侧面△
OAB
,△
OAC
,△
OBC
的面积,则下列选项中对于
S
,
S
1
,
S
2
,
S
3
满足的关系描述正确的为( )
A.
S
2
=
S
+
S
+
S
B.
C.
S
=
S
1
+
S
2
+
S
3
D.
相关知识点
推理与证明
合情推理与演绎推理
类比推理
平面与空间中的类比