- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 归纳推理
- + 类比推理
- 类比推理概念辨析
- 圆锥曲线中的类比推理
- 等差、等比数列中的类比推理
- 平面与空间中的类比
- 运算法则的类比
- 解题方法的类比
- 其他类比
- 合情推理概念辨析
- 演绎推理
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
祖暅(公元前5~6世纪)是我国齐梁时代的数学家,是祖冲之的儿子,他提出了一条原原理:“幂势既同,则积不容异.”这里的“幂”指水平截面的面积,“势”指高。这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等。设由椭圆
所围成的平面图形绕
轴旋转一周后,得一橄榄状的几何体(称为椭球体),课本中介绍了应用祖暅原理求球体体积公式的做法,请类比此法,求出椭球体体积,其体积等于( )


A.![]() | B.![]() |
C.![]() | D.![]() |
在一项田径比赛中,甲、乙、丙三人的夺冠呼声最高.观众A、B、C做了一项预测:A说:“我认为冠军不会是甲,也不会是乙”.B说:“我觉得冠军不会是甲,冠军会是丙”.C说:“我认为冠军不会是丙,而是甲”.比赛结果出来后,发现A、B、C三人中有一人的两个判断都对,一人的两个判断都错,还有一人的两个判断一对一错,根据以上情况可判断冠军是( )
A.甲 | B.乙 | C.丙 | D.丁 |
如图所示,在三棱锥
中,
,
,
,且
,
,
和底面
所成的角分别为
,
,
,
,
,
的面积分别为
,
,
,类比三角形中的正弦定理,给出空间图形的一个猜想是_______.


















在平面几何里,有勾股定理:“设
的两边
,
互相垂直,则
”,拓展到空间,类比平面几何的勾股定理,“设三棱锥
的三个侧面
、
、
两两相互垂直,则可得( )








A.![]() |
B.![]() |
C.![]() |
D.![]() |
设
是边长为
的正
内的一点,
点到三边的距离分别为
,则
;类比到空间,设
是棱长为
的空间正四面体
内的一点,则
点到四个面的距离之和
=___________.











在平面几何中:已知
是
内的任意一点,连结
并延长交对边于
,则
. 这是一个真命题,其证明常采用“面积法”.拓展到空间,可以得出的真命题是:已知
是四面体
内的任意一点,连结
并延长交对面于
,则________________________.









下面几种推理过程是演绎推理的是( )
A.两条直线平行,同旁内角互补,如果![]() ![]() ![]() ![]() ![]() |
B.由平面三角形的性质,推测空间四面体的性质 |
C.某校高二共有10个班,1班有51人,2班有53人,三班有52人,由此推测各班都超过50人 |
D.在数列![]() ![]() ![]() ![]() ![]() |
三角形的面积为
,(
为三角形的边长,
为三角形的内切圆的半径)利用类比推理,可以得出四面体的体积为 ( )



A.![]() ![]() |
B.![]() ![]() ![]() |
C.![]() ![]() ![]() |
D.![]() ![]() ![]() |