刷题首页
题库
高中数学
题干
已知椭圆
:
,其焦距为
,若
,则称椭圆
为“黄金椭圆”.黄金椭圆有如下性质:“黄金椭圆”的左、右焦点分别是
,
,以
,
,
,
为顶点的菱形
的内切圆过焦点
,
.
(1)类比“黄金椭圆”的定义,试写出“黄金双曲线”的定义;
(2)类比“黄金椭圆”的性质,试写出“黄金双曲线”的性质,并加以证明.
上一题
下一题
0.99难度 解答题 更新时间:2018-07-22 10:37:43
答案(点此获取答案解析)
同类题1
若点
在椭圆
内,则被
所平分的弦所在的直线方程是
,通过类比的方法,可求得:被
所平分的双曲线
的弦所在的直线方程是( )
A.
B.
C.
D.
同类题2
已知
-
>1,过点
P
(
x
0
,
y
0
)作一直线与双曲线
-
=1相交且仅有一个公共点,则该直线的斜率恰为双曲线的两条渐近线的斜率±
.类比此思想,已知
y
0
<
,过点
P
(
x
0
,
y
0
)(
x
0
>0)作一条不垂直于
x
轴的直线
l
与曲线
y
=
相交且仅有一个公共点,则该直线
l
的斜率为________.
同类题3
我们知道:在平面内,点
到直线
的距离公式为
,通过类比的方法,可求得:在空间中,点
到平面
的距离为__________.
同类题4
已知圆:
的面积为
,类似的,椭圆:
的面积为__.
同类题5
已知椭圆
C
:
+
=1(
a
>
b
>0)具有性质:若
M
,
N
是椭圆
C
上关于原点对称的两点,点
P
是椭圆
C
上任意一点,当直线
PM
,
PN
的斜率都存在时,分别记为
k
PM
,
k
PN
,那么
k
PM
与
k
PN
之积是与点
P
的位置无关的定值.试对双曲线
E
:
-
=1(
a
>0,
b
>0)写出类似的性质,并加以证明.
相关知识点
推理与证明
合情推理与演绎推理
类比推理
圆锥曲线中的类比推理