- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 归纳推理
- + 类比推理
- 类比推理概念辨析
- 圆锥曲线中的类比推理
- 等差、等比数列中的类比推理
- 平面与空间中的类比
- 运算法则的类比
- 解题方法的类比
- 其他类比
- 合情推理概念辨析
- 演绎推理
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示,面积为
的平面凸四边形的第
条边的边长为
,此四边形内在一点
到第
条边的距离记为
,若
,则
.类比以上性质,体积为
的三棱锥的第
个面的面积记为
,此三棱锥内任一点
到第
个面的距离记为
,若
,
( ).


















A.![]() | B.![]() | C.![]() | D.![]() |
在平面直角坐标系
中,满足
的点
的集合对应的平面图形的面积为
;类似的,在空间直角坐标系
中,满足
的点
的集合对应的空间几何体的体积为___________.







如图甲所示,在直角
中,
、
,
是垂足,则有
,该结论称为射影定理.如图乙所示,在三棱锥
中,
平面
,
平面
,
为垂足,且
在
内,类比直角三角形中的射影定理,则有 .














若三角形内切圆的半径为
,三边长为
,则三角形的面积等于
,根据类比推理的方法,若一个四面体的内切球的半径为
,四个面的面积分别是
,则四面体的体积
_____.






(数学文卷·2017届河北省武邑中学高三上学期第五次调研考试第14题) 我国南北朝时代的数学家组暅提出体积的计算原理(组暅原理):“幂势既同,则积不容异”.“势”即是高,“幂”是面积.意思是:如果两等高的几何体在同高处裁得两几何体的裁面积恒等,那么这两个几何体的体积相等,类比组暅原理,如图所示,在平面直角坐标系中,图1是一个形状不规则的封闭图形,图2是一个矩形,且当实数
取
上的任意值时,直线
被图1和图2所截得的线段始终相等,则图1的面积为__________.




在圆中有结论:如图所示,“AB是圆O的直径,直线AC,BD是圆O过A,B的切线,P是圆O上任意一点,CD是过P的切线,则有PO2=PC·PD”.类比到椭圆:“AB是椭圆的长轴,直线AC,BD是椭圆过A,B的切线,P是椭圆上任意一点,CD是过P的切线,则有__▲__.”
