刷题首页
题库
高中数学
题干
(数学文卷·2017届河北省武邑中学高三上学期第五次调研考试第14题) 我国南北朝时代的数学家组暅提出体积的计算原理(组暅原理):“幂势既同,则积不容异”.“势”即是高,“幂”是面积.意思是:如果两等高的几何体在同高处裁得两几何体的裁面积恒等,那么这两个几何体的体积相等,类比组暅原理,如图所示,在平面直角坐标系中,图1是一个形状不规则的封闭图形,图2是一个矩形,且当实数
取
上的任意值时,直线
被图1和图2所截得的线段始终相等,则图1的面积为__________.
上一题
下一题
0.99难度 填空题 更新时间:2017-01-20 09:10:49
答案(点此获取答案解析)
同类题1
在矩形
中,对角线
与相邻两边所成的角分别为
、
,则有
,类比到空间中的一个正确命题是:在长方体
中,对角线
与相邻三个面所成的角分别为
、
、
,则
__________.
同类题2
在三角形内,我们将三条边的中线的交点称为三角形的重心,且重心到任一顶点的距离是到对边中点距离的两倍类比上述结论:在三棱锥中,我们将顶点与对面重心的连线段称为三棱锥的“中线”,将三棱锥四条中线的交点称为它的“重心”,则棱锥重心到顶点的距离是到对面重心距离的
______
倍
同类题3
已知正三角形
的边长是
,若
是
内任意一点,那么
到三角形三边的距离之和是定值
.这是平面几何中一个命题,其证明常采用“面积法”.如图,设
到三边的距离分别是
、
、
,则
,
为正三角形
的高
,即
.运用类比法猜想,对于空间正四面体,存在什么类似结论,并用“体积法”证明.
同类题4
点
到直线
的距离公式为
,通过类比的方法,可求得:在空间中,点
到平面
的距离为___.
同类题5
在平面几何里,有勾股定理:“设
的两边AB、AC互相垂直,则
.”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面积与底面积间的关系,可以得到的正确结论是:“设三棱锥A-BCD的三个侧面ABC 、ACD、ADB两两互相垂直,则
”.
相关知识点
推理与证明
合情推理与演绎推理
类比推理
平面与空间中的类比