- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- + 频率分布表
- 确定极差、组数与组距
- 绘制频率分布表
- 补全频率分布表
- 根据频率分布表解决实际问题
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一企业从某条生产线上随机抽取100件产品,测量这些产品的某项技术指标值x,得到如下的频率分布表:
(Ⅰ)作出样本的频率分布直方图,并估计该技术指标值x的平均数和众数;
(Ⅱ)若x<13或x≥21,则该产品不合格.现从不合格的产品中随机抽取2件,求抽取的2件产品中技术指标值小于13的产品恰有一件的概率.
x | [11,13) | [13,15) | [15,17) | [17,19) | [19,21) | [21,23) |
频数 | 2 | 12 | 34 | 38 | 10 | 4 |
(Ⅰ)作出样本的频率分布直方图,并估计该技术指标值x的平均数和众数;
(Ⅱ)若x<13或x≥21,则该产品不合格.现从不合格的产品中随机抽取2件,求抽取的2件产品中技术指标值小于13的产品恰有一件的概率.
在我校进行的选修课结业考试中,所有选修 “数学与逻辑”的同学都同时也选修了“阅读与表达”的课程,选修“阅读与表达”的同学都同时也选修了“数学与逻辑”的课程.选修课结业成绩分为A,B,C,D,E五个等级. 某考场考生的两科考试成绩的数据统计如下图所示,其中“数学与逻辑”科目的成绩为B的考生有10人,

(1)求该考场考生中“阅读与表达”科目中成绩为A的人数;
(2)现在从“数学与逻辑”科目的成绩为A和D的考生中随机抽取两人,则求抽到的两名考生都是成绩为A的考生的概率.

(1)求该考场考生中“阅读与表达”科目中成绩为A的人数;
(2)现在从“数学与逻辑”科目的成绩为A和D的考生中随机抽取两人,则求抽到的两名考生都是成绩为A的考生的概率.
从某校高三学生中随机抽取了
名学生,统计了期末数学考试成绩如下表:
(1)请在频率分布表中的①、②位置上填上相应的数据,并在给定的坐标系中作出这些数据的频率分布直方图,再根据频率分布直方图估计这
名学生的平均成绩;
(2)用分层抽样的方法在分数在
内的学生中抽取一个容量为
的样本,将该样本看成一个总体,从中任取
人,求至少有
人的分数在
内的概率.

(1)请在频率分布表中的①、②位置上填上相应的数据,并在给定的坐标系中作出这些数据的频率分布直方图,再根据频率分布直方图估计这

(2)用分层抽样的方法在分数在






随着社会的发展,食品安全问题渐渐成为社会关注的热点,为了提高学生的食品安全意识,某学校组织全校学生参加食品安全知识竞赛,成绩的频率分布直方图如下图所示,数据的分组依次为
,
,
,
,若该校的学生总人数为3000,则成绩不超过60分的学生人数大约为________ .





天然气是较为安全的燃气之一,它不含一氧化碳,也比空气轻,一旦泄露,立即会向上扩散,不易积累形成爆炸性气体,安全性较高,其优点有:①绿色环保;②经济实惠;③安全可靠;④改善生活. 某市政府为了节约居民天然气,计划在本市试行居民天然气定额管理,即确定一个居民年用气量的标准,为了确定一个较为合理的标准,必须先了解全市居民日常用气量的分布情况,现采用抽样调查的方式,获得了
位居民某年的用气量(单位:立方米),样本统计结果如下图表.

(1)分布求出
的值;
(2)若从样本中年均用气量在
(单位:立方米)的5位居民中任选2人作进一步的调查研究,求年均用气量最多的居民被选中的概率(5位居民的年均用气量均不相等).


(1)分布求出

(2)若从样本中年均用气量在

某学校上学期的期中考试后,为了了解某学科的考试成绩,根据学生的考试成绩利用分层抽样抽取
名学生的成绩进行统计(所有学生成绩均不低于
分),得到学生成绩的频率分布直方图如图,回答下列问题;
(Ⅰ)根据频率分布直方图计算本次考试成绩的平均分;
(Ⅱ)已知本次全校考试成绩在
内的人数为
,试确定全校的总人数;
(Ⅲ)若本次考试抽查的
人中考试成绩在
内的有
名女生,其余为男生,从中选择两名学生,求选择一名男生与一名女生的概率.


(Ⅰ)根据频率分布直方图计算本次考试成绩的平均分;
(Ⅱ)已知本次全校考试成绩在


(Ⅲ)若本次考试抽查的




我市2016年11月1日
11月30日对空气污染指数的监测数据如下(主要污染物可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,83,82,82,64,79,86,85,75,71,49,45.
样本频率分布表:
(Ⅰ)完成频率分布表;
(Ⅱ)作出频率分布直方图;
(Ⅲ)根据国家标准,污染指数在0
50之间时,空气质量为优;在51
100之间时为良;在101
150之间时,为轻微污染;在151
200之间时,为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.

样本频率分布表:
分组 | 频数 | 频率 |
![]() | 2 | ![]() |
![]() | 1 | ![]() |
![]() | 4 | ![]() |
![]() | 6 | ![]() |
![]() | 10 | ![]() |
![]() | | |
![]() | 2 | ![]() |
(Ⅰ)完成频率分布表;
(Ⅱ)作出频率分布直方图;
(Ⅲ)根据国家标准,污染指数在0




从某企业生产的某种产品中抽取100件样本,测量这些样本的一项质量指标值,由测量结果得如下频数分布表:
质量指标 值分组 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125] |
频数 | 6 | 26 | 38 | 22 | 8 |
则样本的该项质量指标值落在[105,125]上的频率为_____.
一个频率分布表(样本容量为30)不小心被损坏了一部分,只记得样本中数据在
上的频率为0.8,则估计样本在
内的数据个数为( )




A.14 | B.15 | C.16 | D.17 |
(本小题满分12分)
我校高三年级进行了一次水平测试.用系统抽样的方法抽取了50名学生的数学成绩,准备进行分析和研究.经统计成绩的分组及各组的频数如下:
[40,50), 2; [50,60), 3; [60,70), 10; [70,80), 15; [80,90), 12; [90,100], 8.
(Ⅰ)完成样本的频率分布表;画出频率分布直方图.
(Ⅱ)估计成绩在85分以下的学生比例;
(Ⅲ)请你根据以上信息去估计样本的众数、中位数、平均数.(精确到0.01)
我校高三年级进行了一次水平测试.用系统抽样的方法抽取了50名学生的数学成绩,准备进行分析和研究.经统计成绩的分组及各组的频数如下:
[40,50), 2; [50,60), 3; [60,70), 10; [70,80), 15; [80,90), 12; [90,100], 8.
(Ⅰ)完成样本的频率分布表;画出频率分布直方图.
(Ⅱ)估计成绩在85分以下的学生比例;
(Ⅲ)请你根据以上信息去估计样本的众数、中位数、平均数.(精确到0.01)
