- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- + 频率分布表
- 确定极差、组数与组距
- 绘制频率分布表
- 补全频率分布表
- 根据频率分布表解决实际问题
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某技术人员在某基地培育了一种植物,一年后,该技术人员从中随机抽取了部分这种植物的高度(单位:厘米)作为样本(样本容量为
)进行统计,绘制了如下频率分布直方图,已知抽取的样本植物高度在
内的植物有8株,在
内的植物有2株.

(Ⅰ)求样本容量
和频率分布直方图中的
,
的值;
(Ⅱ)在选取的样本中,从高度在
内的植物中随机抽取3株,设随机变量
表示所抽取的3株高度在
内的株数,求随机变量
的分布列及数学期望;
(Ⅲ)据市场调研,高度在
内的该植物最受市场追捧.老王准备前往该基地随机购买该植物50株.现有两种购买方案,方案一:按照该植物的不同高度来付费,其中高度在
内的每株10元,其余高度每株5元;方案二:按照该植物的株数来付费,每株6元.请你根据该基地该植物样本的统计分析结果为决策依据,预测老王采取哪种付费方式更便宜?




(Ⅰ)求样本容量



(Ⅱ)在选取的样本中,从高度在




(Ⅲ)据市场调研,高度在


为了让学生更多的了解“数学史”知识,某中学高二年级举办了一次“追寻先哲的足迹,倾听数学的声音”的数学史知识竞赛活动,共有800名学生参加了这次竞赛,为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计,统计结果见下表.请你根据频率分布表解答下列问题:
(1)填充频率分布表中的空格;
(2)规定成绩不低于85分的同学能获奖,请估计在参加的800名学生中大概有多少名同学获奖?
(3)在上述统计数据的分析中有一项计算见算法流程图,求输出的
的值.
序号![]() | 分组(分数) | 组中值![]() | 频数(人数) | 频率![]() |
1 | ![]() | 65 | ① | 0.12 |
2 | ![]() | 75 | 20 | ② |
3 | ![]() | 85 | ③ | 0.24 |
4 | ![]() | 95 | ④ | ⑤ |
合计 | | | 50 | 1 |
(1)填充频率分布表中的空格;
(2)规定成绩不低于85分的同学能获奖,请估计在参加的800名学生中大概有多少名同学获奖?
(3)在上述统计数据的分析中有一项计算见算法流程图,求输出的


行了一次水平测试。用系统抽样的方法抽取了50名学生的数学成绩,准备进行分析和研究。经统计成绩的分组及各组的频数如下:
,2;
,3;
,10;
,15;
,12;
,8.
(Ⅰ)频率分布表
频率分布直方图为

(Ⅰ)完成样本的频率分布表;画出频率分直方图;
(Ⅱ)估计成绩在85分以下的学生比例;
(Ⅲ)请你根据以上信息去估计样本的众数、中位数、平均数.(精确到0.01)






(Ⅰ)频率分布表
分组 | 频数 | 频率 |
![]() | 2 | |
![]() | 3 | |
![]() | 10 | |
![]() | 15 | |
![]() | 12 | |
![]() | 8 | |
合计 | 50 | |
频率分布直方图为

(Ⅰ)完成样本的频率分布表;画出频率分直方图;
(Ⅱ)估计成绩在85分以下的学生比例;
(Ⅲ)请你根据以上信息去估计样本的众数、中位数、平均数.(精确到0.01)
为缓解日益拥堵的交通状况,不少城市实施车牌竞价策略,以控制车辆数量.某地车牌竞价的原则是:①“盲拍”,即所有参与竞拍的人都是网络报价,每个人并不知晓其他人的报价,也不知道参与当期竞拍的总人数;②竞价时间截止后,系统根据当期车牌配额,按照竞价人的出价从高到低分配名额.某人拟参加2018年10月份的车牌竞价,他为了预测最低成交价,根据竞拍网站的公告,统计了最近5个月参与竞拍的人数(见表):
(1)由收集数据的散点图发现,可以线性回归模拟竞拍人数y(万人)与月份编号t之间的相关关系.现用最小二乘法求得y关于t的回归方程为
,请求出表中的m的值并预测2018年9月参与竞拍的人数;
(2)某市场调研机构对200位拟参加2018年9月车牌竞拍人员的报价价格进行了一个抽样调查,得到如下一个频数表:
(i)求这200位竞拍人员报价的平均值
(同一区间的报价可用该价格区间的中点值代替);
(ii)假设所有参与竞拍人员的报价X服从正态分布
,且
为(i)中所求的样本平均数
的估值,
.若2018年9月实际发放车牌数量为3174,请你合理预测(需说明理由)竞拍的最低成交价.参考公式及数据:若随机变量Z服从正态分布
,则:
,
,
.
月份 | 2018.04 | 2018.05 | 2018.06 | 2018.07 | 2018.08 |
月份编号t | 1 | 2 | 3 | 4 | 5 |
竞拍人数y(万人) | 0.5 | 0.6 | m | 1.4 | 1.7 |
(1)由收集数据的散点图发现,可以线性回归模拟竞拍人数y(万人)与月份编号t之间的相关关系.现用最小二乘法求得y关于t的回归方程为

(2)某市场调研机构对200位拟参加2018年9月车牌竞拍人员的报价价格进行了一个抽样调查,得到如下一个频数表:
报价区间(万元) | [1,2) | [2,3) | [3,4) | [4,5) | [5,6) | [6,7] |
频数 | 20 | 60 | 60 | 30 | 20 | 10 |
(i)求这200位竞拍人员报价的平均值

(ii)假设所有参与竞拍人员的报价X服从正态分布








下表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:
则下列判断中正确的是()
| 空调类 | 冰箱类 | 小家电类 | 其它类 |
营业收入占比 | 90.10% | 4.98% | 3.82% | 1.10% |
净利润占比 | 95.80% | ﹣0.48% | 3.82% | 0.86% |
则下列判断中正确的是()
A.该公司2018年度冰箱类电器销售亏损 |
B.该公司2018年度小家电类电器营业收入和净利润相同 |
C.该公司2018年度净利润主要由空调类电器销售提供 |
D.剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低 |
容量为100的样本数据,分组后的频数如下表:
则样本数据落在区间
内的频率是( )
分组 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 5 | 12 | 20 | 38 | 17 | 8 |
则样本数据落在区间

A.0.25 | B.0.35 | C.0.45 | D.0.55 |
近年来郑州空气污染较为严重.现随机抽取一年(365天)内100天的空气中
指数的检测数据,统计结果如下:
记某企业每天由空气污染造成的经济损失为
(单位:元),
指数为
,当
在区间
内时对企业没有造成经济损失;当
在区间
内时对企业造成经济损失成直线模型(当
指数为150时造成的经济损失为500元,当
指数为200时,造成的经济损失为700元);当
指数大于300时造成的经济损失为2000元.
(1)试写出
的表达式;
(2)试估计在本年内随机抽取一天,该天经济损失
大于500元且不超过900元的概率;
(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面列联表,并判断是否有95%的把握认为郑州市本年度空气重度污染与供暖有关?
附:
,其中
.

![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
空气质量 | 优 | 良 | 轻微污染 | 轻度污染 | 中度污染 | 中度重污染 | 重度污染 |
天数 | 4 | 13 | 18 | 30 | 9 | 11 | 15 |
记某企业每天由空气污染造成的经济损失为










(1)试写出

(2)试估计在本年内随机抽取一天,该天经济损失

(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面列联表,并判断是否有95%的把握认为郑州市本年度空气重度污染与供暖有关?
![]() | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 1.32 | 2.07 | 2.70 | 3.74 | 5.02 | 6.63 | 7.87 | 10.82 |
附:

