某技术人员在某基地培育了一种植物,一年后,该技术人员从中随机抽取了部分这种植物的高度(单位:厘米)作为样本(样本容量为)进行统计,绘制了如下频率分布直方图,已知抽取的样本植物高度在内的植物有8株,在内的植物有2株.

(Ⅰ)求样本容量和频率分布直方图中的,的值;
(Ⅱ)在选取的样本中,从高度在内的植物中随机抽取3株,设随机变量表示所抽取的3株高度在内的株数,求随机变量的分布列及数学期望;
(Ⅲ)据市场调研,高度在内的该植物最受市场追捧.老王准备前往该基地随机购买该植物50株.现有两种购买方案,方案一:按照该植物的不同高度来付费,其中高度在内的每株10元,其余高度每株5元;方案二:按照该植物的株数来付费,每株6元.请你根据该基地该植物样本的统计分析结果为决策依据,预测老王采取哪种付费方式更便宜?
当前题号:1 | 题型:解答题 | 难度:0.99
为了让学生更多的了解“数学史”知识,某中学高二年级举办了一次“追寻先哲的足迹,倾听数学的声音”的数学史知识竞赛活动,共有800名学生参加了这次竞赛,为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计,统计结果见下表.请你根据频率分布表解答下列问题:
序号
分组(分数)
组中值
频数(人数)
频率
1

65

0.12
2

75
20

3

85

0.24
4

95


合计
 
 
50
1
 
(1)填充频率分布表中的空格;
(2)规定成绩不低于85分的同学能获奖,请估计在参加的800名学生中大概有多少名同学获奖?
(3)在上述统计数据的分析中有一项计算见算法流程图,求输出的的值.
当前题号:2 | 题型:解答题 | 难度:0.99
行了一次水平测试。用系统抽样的方法抽取了50名学生的数学成绩,准备进行分析和研究。经统计成绩的分组及各组的频数如下:,2;,3;,10;,15;,12;,8.
(Ⅰ)频率分布表
分组
频数
频率

2
 

3
 

10
 

15
 

12
 

8
 
合计
50
 
 
频率分布直方图为

(Ⅰ)完成样本的频率分布表;画出频率分直方图;
(Ⅱ)估计成绩在85分以下的学生比例;
(Ⅲ)请你根据以上信息去估计样本的众数、中位数、平均数.(精确到0.01)
当前题号:3 | 题型:解答题 | 难度:0.99
为缓解日益拥堵的交通状况,不少城市实施车牌竞价策略,以控制车辆数量.某地车牌竞价的原则是:①“盲拍”,即所有参与竞拍的人都是网络报价,每个人并不知晓其他人的报价,也不知道参与当期竞拍的总人数;②竞价时间截止后,系统根据当期车牌配额,按照竞价人的出价从高到低分配名额.某人拟参加2018年10月份的车牌竞价,他为了预测最低成交价,根据竞拍网站的公告,统计了最近5个月参与竞拍的人数(见表):
月份
2018.04
2018.05
2018.06
2018.07
2018.08
月份编号t
1
2
3
4
5
竞拍人数y(万人)
0.5
0.6
m
1.4
1.7
 
(1)由收集数据的散点图发现,可以线性回归模拟竞拍人数y(万人)与月份编号t之间的相关关系.现用最小二乘法求得y关于t的回归方程为,请求出表中的m的值并预测2018年9月参与竞拍的人数;
(2)某市场调研机构对200位拟参加2018年9月车牌竞拍人员的报价价格进行了一个抽样调查,得到如下一个频数表:
报价区间(万元)
[1,2)
[2,3)
[3,4)
[4,5)
[5,6)
[6,7]
频数
20
60
60
30
20
10
 
(i)求这200位竞拍人员报价的平均值(同一区间的报价可用该价格区间的中点值代替);
(ii)假设所有参与竞拍人员的报价X服从正态分布,且为(i)中所求的样本平均数的估值,.若2018年9月实际发放车牌数量为3174,请你合理预测(需说明理由)竞拍的最低成交价.参考公式及数据:若随机变量Z服从正态分布,则:.
当前题号:4 | 题型:解答题 | 难度:0.99
下表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:
 
空调类
冰箱类
小家电类
其它类
营业收入占比
90.10%
4.98%
3.82%
1.10%
净利润占比
95.80%
﹣0.48%
3.82%
0.86%
 
则下列判断中正确的是()
A.该公司2018年度冰箱类电器销售亏损
B.该公司2018年度小家电类电器营业收入和净利润相同
C.该公司2018年度净利润主要由空调类电器销售提供
D.剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低
当前题号:5 | 题型:多选题 | 难度:0.99
容量为100的样本数据,分组后的频数如下表:
分组






频数
5
12
20
38
17
8
 
则样本数据落在区间内的频率是( )
A.0.25B.0.35C.0.45D.0.55
当前题号:6 | 题型:单选题 | 难度:0.99
近年来郑州空气污染较为严重.现随机抽取一年(365天)内100天的空气中指数的检测数据,统计结果如下:








空气质量


轻微污染
轻度污染
中度污染
中度重污染
重度污染
天数
4
13
18
30
9
11
15
 
记某企业每天由空气污染造成的经济损失为(单位:元),指数为,当在区间内时对企业没有造成经济损失;当在区间内时对企业造成经济损失成直线模型(当指数为150时造成的经济损失为500元,当指数为200时,造成的经济损失为700元);当指数大于300时造成的经济损失为2000元.
(1)试写出的表达式;
(2)试估计在本年内随机抽取一天,该天经济损失大于500元且不超过900元的概率;
(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面列联表,并判断是否有95%的把握认为郑州市本年度空气重度污染与供暖有关?

0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001

1.32
2.07
2.70
3.74
5.02
6.63
7.87
10.82
 
附:
,其中.
当前题号:7 | 题型:解答题 | 难度:0.99