- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- + 频率分布表
- 确定极差、组数与组距
- 绘制频率分布表
- 补全频率分布表
- 根据频率分布表解决实际问题
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩共分五组,得到频率分布表如下表所示.


(1)请求出①②位置相应的数字,填在答题卡相应位置上,并补全频率分布直方图;
(2)为了能选出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样的方法抽取12人进入第二轮面试,求第3、4、5组中每组各抽取多少人进入第二轮的面试;假定考生“XXX”笔试成绩为178分,但不幸没入选这100人中,那这样的筛选方法对该生而言公平吗?为什么?
(3)在(2)的前提下,学校决定在12人中随机抽取3人接受“王教授”的面试,设第4组中被抽取参加“王教授”面试的人数为
,求
的分布列和数学期望.


(1)请求出①②位置相应的数字,填在答题卡相应位置上,并补全频率分布直方图;
(2)为了能选出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样的方法抽取12人进入第二轮面试,求第3、4、5组中每组各抽取多少人进入第二轮的面试;假定考生“XXX”笔试成绩为178分,但不幸没入选这100人中,那这样的筛选方法对该生而言公平吗?为什么?
(3)在(2)的前提下,学校决定在12人中随机抽取3人接受“王教授”的面试,设第4组中被抽取参加“王教授”面试的人数为


为丰富课余生活,某班开展了一次有奖知识竞赛,在竞赛后把成绩(满分为100分,分数均为整数)进行统计,制成如图的频率分布表:

(Ⅰ)求
的值;
(Ⅱ)若得分在
之间的有机会得一等奖,已知其中男女比例为2∶3,如果一等奖只有两名,写出所有可能的结果,并求获得一等奖的全部为女生的概率.

(Ⅰ)求

(Ⅱ)若得分在

电视连续剧《人民的名义》自2017年3月28日在湖南卫视开播以来,引发各方关注,收视率、点击率均占据各大排行榜首位.我们用简单随机抽样的方法对这部电视剧的观看情况进行抽样调查,共调查了600人,得到结果如下:其中图1是非常喜欢《人民的名义》这部电视剧的观众年龄的频率分布直方图;表1是不同年龄段的观众选择不同观看方式的人数.


求:(I)假设同一组中的每个数据用该组区间的中点值代替,求非常喜欢《人民的名义》这部电视剧的观众的平均年龄;
(II)根据表1,通过计算说明我们是否有99%的把握认为观看该剧的方式与年龄有关?
附:
观看方式 年龄(岁) | 电视 | 网络 |
![]() | 150 | 250 |
![]() | 120 | 80 |


求:(I)假设同一组中的每个数据用该组区间的中点值代替,求非常喜欢《人民的名义》这部电视剧的观众的平均年龄;
(II)根据表1,通过计算说明我们是否有99%的把握认为观看该剧的方式与年龄有关?
![]() | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
附:

某批发市场对某种商品的日销售量(单位:吨)进行统计,最近50天的结果如下:

(1)求表中
的值
(2)若以上表频率作为概率,且每天的销售量相互独立,
①求5天中该种商品恰有2天销售量为1.5吨的概率;
②已知每吨该商品的销售利润为2千元,
表示该种商品两天销售利润的和(单位:千元),求
的分布列和期望.

(1)求表中

(2)若以上表频率作为概率,且每天的销售量相互独立,
①求5天中该种商品恰有2天销售量为1.5吨的概率;
②已知每吨该商品的销售利润为2千元,


下表是抽测某校初二女生身高情况所得的部分资料(身高单位:cm,测量时精确到1cm),已知身高在151cm以下(含151cm)的被测女生共3人,则所有被测女生总数为 . 

从高三学生中抽取50名同学参加数学竞赛,成绩的分组及各组的频数如下(单位:分):
[40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100],8.
(1)列出样本的频率分布表;
(2)画出频率分布直方图;
(3)估计成绩在[60,90)分的学生比例.
[40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100],8.
(1)列出样本的频率分布表;
(2)画出频率分布直方图;
(3)估计成绩在[60,90)分的学生比例.
有一个容量为100的样本,数据的分组及各组的频数如下:



(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)估计数据小于30.5的概率.




(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)估计数据小于30.5的概率.
近年来,全球气候变化无常,给人们的生产与生活该来诸多不便.为研究气候的变化趋势,给我们的生产与生活提供有力的数据支持,某市气象部门统计了共100个星期中每个星期气温的最高温度和最低温度,如表所示:
(Ⅰ)若第六、七、八组的频数
、
、
为递减的等差数列,且第一组与第八组的频数相同,求出
、
、
、
的值;
(Ⅱ)若从第一组和第八组的所有星期中随机抽取两个星期,分别记它们的平均温度为
,
,求事件“
”的概率.
(Ⅰ)若第六、七、八组的频数







(Ⅱ)若从第一组和第八组的所有星期中随机抽取两个星期,分别记它们的平均温度为




某校对高三年级部分女生的身高(单位cm,测量时精确到1cm)进行测量后的分组和频率如下:
已知身高在153cm及以下的被测女生有3人,则所有被测女生的人数是
分组 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频率 | 0.02 | 0.04 | 0.08 | 0.1 | 0.32 | 0.26 | 0.15 | 0.03 |
已知身高在153cm及以下的被测女生有3人,则所有被测女生的人数是
一个容量为66的样本,其数据的分组及各组相应的频数如右表所示,则根据表中数据可估计总
体中数据落在
的概率等于( )
体中数据落在

数据的分组 | 频数 |
[11.5,15.5) | 2 |
[15.5,19.5) | 4 |
[19.5,23.5) | 9 |
[23.5,27.5) | 18 |
[27.5,31.5) | 11 |
[31.5,35.5) | 12 |
[35.5.39.5) | 7 |
[39.5,43.5) | 3 |
A.![]() | B.![]() |
C.![]() | D.![]() |