- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- + 中位数
- 计算几个数的中位数
- 由频率分布直方图估计中位数
- 由茎叶图计算中位数
- 用中位数的代表意义解决实际问题
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某城市一社区接到有关部门的通知,对本社区居民用水量进行调研,通过抽样调查的方法获得了100户居民某年的月均用水量(单位:t),通过分组整理数据,得到数据的频率分布直方图如图所示:

(Ⅰ)求图中m的值;并估计该社区居民月均用水量的中位数和平均值.(保留3位小数)
(Ⅱ)用此样本频率估计概率,若从该社区随机抽查3户居民的月均用水量,问恰有2户超过
的概率为多少?
(Ⅲ)若按月均用水量
和
分成两个区间用户,按分层抽样的方法抽取10户,每户出一人参加水价调整方案听证会.并从这10人中随机选取3人在会上进行陈述发言,设来自用水量在区间
的人数为X,求X的分布列和数学期望.

(Ⅰ)求图中m的值;并估计该社区居民月均用水量的中位数和平均值.(保留3位小数)
(Ⅱ)用此样本频率估计概率,若从该社区随机抽查3户居民的月均用水量,问恰有2户超过

(Ⅲ)若按月均用水量



16种食品所含的热量值如下:
111 123 123 164 430 190 175 236
430 320 250 280 160 150 210 123
(1)求数据的中位数与平均数;
(2)用这两种数字特征中的哪一种来描述这个数据集更合适?
111 123 123 164 430 190 175 236
430 320 250 280 160 150 210 123
(1)求数据的中位数与平均数;
(2)用这两种数字特征中的哪一种来描述这个数据集更合适?
2020年2月8日,在韩国首尔举行的四大洲花样滑冰锦标赛双人自由滑比赛中,中国组合隋文静/韩聪以总分217.51分拿下四大洲赛冠军,这也是他们第六次获得四大洲冠军.中国另一对组合彭程/金杨以213.29分摘得银牌.颁奖仪式上,国歌奏响!五星红旗升起!团结一心!中国加油!花样滑冰锦标赛有9位评委进行评分,首先这9位评委给出某对选手的原始分数,评定该对选手的成绩时从9个原始成绩中去掉一个最高分、一个最低分,得到7个有效评分,7个有效评分与9个原始评分相比,不变的数字特征是( )
A.中位数 | B.平均数 | C.方差 | D.极差 |
“总把新桃换旧符”(王安石)、“灯前小草写桃符”(陆游),春节是中华民族的传统节日.在宋代人们用写“桃符”的方式来祈福避祸,而现代人们通过贴“福”字、春联等方式来表达对新年的美好祝愿.某商家在春节前开展商品促销活动,顾客凡购物金额满50元,则可以任意免费领取一张“福”字或一副春联。茎叶图的统计数据是在不同时段内领取“福”字和春联的人数,则它们的中位数依次为( )


A.25,27 | B.26,25 | C.26,27 | D.27,25 |
如图所示的茎叶图记录了甲,乙两支篮球队各
名队员某场比赛的得分数据(单位:分).若这两组数据的中位数相等,且平均值也相等,则
和
的值为( )





A.![]() ![]() | B.![]() ![]() | C.![]() ![]() | D.![]() ![]() |
某学校高三年级有学生1000名,经调查研究,其中750名同学经常参加体育锻炼(称为
类同学),另外250名同学不经常参加体育锻炼(称为
类同学),现用分层抽样方法(按
类、
类分二层)从该年级的学生中共抽查100名同学.

(1)测得该年级所抽查的100名同学身高(单位:厘米) 频率分布直方图如图,按照统计学原理,根据频率分布直方图计算这100名学生身高数据的平均数和中位数(单位精确到0.01);
(2)如果以身高达到
作为达标的标准,对抽取的100名学生,得到列联表:
体育锻炼与身高达标
列联表
①完成上表;
②请问有多大的把握认为体育锻炼与身高达标有关系?
参考公式:
.
参考数据:





(1)测得该年级所抽查的100名同学身高(单位:厘米) 频率分布直方图如图,按照统计学原理,根据频率分布直方图计算这100名学生身高数据的平均数和中位数(单位精确到0.01);
(2)如果以身高达到

体育锻炼与身高达标

| 身高达标 | 身高不达标 | 合计 |
积极参加体育锻炼 | 60 | | |
不积极参加体育锻炼 | | 10 | |
合计 | | | 100 |
①完成上表;
②请问有多大的把握认为体育锻炼与身高达标有关系?
参考公式:

参考数据:
![]() | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |