- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- + 频率分布表
- 确定极差、组数与组距
- 绘制频率分布表
- 补全频率分布表
- 根据频率分布表解决实际问题
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
高二年级有500名学生,为了了解数学学科的学习情况,现从中随机抽出若干名学生在一次测试中的数学成绩,制成如下频率分布表:
(1)根据上面图表,①②③处的数值分别为多少;
(2)在所给的坐标系中画出[85,155]的频率分布直方图;

(3)根据题中信息估计总体落在[125,155]中的概率.
分组 | 频数 | 频率 |
![]() | ① | 0. 025 |
![]() | | 0.050 |
![]() | | 0.200 |
![]() | 12 | 0.300 |
![]() | | 0.275 |
![]() | 4 | ② |
[145,155] | | 0.050 |
合计 | | ③ |
(1)根据上面图表,①②③处的数值分别为多少;
(2)在所给的坐标系中画出[85,155]的频率分布直方图;

(3)根据题中信息估计总体落在[125,155]中的概率.
某班全部
名学生在一次百米测试中,成绩全部介于13秒和18秒之间。将测试结果按如下方式分为五组:第一组[13,14);第二组[14,15);…;第五组[17,18],表是按上述分组方式得到的频率分布表。
(1)求
及上表中的
的值;
(2)设m,n是从第一组或第五组中任意抽取的两名学生的百米测试成绩,求事件“
”的概率.

分 组 | 频数 | 频率 |
[13,14) | ![]() | ![]() |
[14,15) | ![]() | ![]() |
[15,16) | ![]() | ![]() |
[16,17) | ![]() | ![]() |
[17,18] | ![]() | ![]() |
(1)求


(2)设m,n是从第一组或第五组中任意抽取的两名学生的百米测试成绩,求事件“

(本小题满分12分)
根据世行2013年新标准,人均GDP低于1035美元为低收入国家;人均GDP为1035-4085元为中等偏下收入国家;人均GDP为4085-12616美元为中等偏上收入国家;人均GDP不低于12616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP如下表:

(1)判断该城市人均GDP是否达到中等偏上收入国家标准;
(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP都达到中等偏上收入国家标准的概率.
根据世行2013年新标准,人均GDP低于1035美元为低收入国家;人均GDP为1035-4085元为中等偏下收入国家;人均GDP为4085-12616美元为中等偏上收入国家;人均GDP不低于12616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP如下表:

(1)判断该城市人均GDP是否达到中等偏上收入国家标准;
(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP都达到中等偏上收入国家标准的概率.
为了解我区中学生的体质状况及城乡大学生的体质差异,对银川地区部分大学的学生进行了身高、体重和肺活量的抽样调查.现随机抽取100名学生,测得其身高情况如下表所示

(1)请在频率分布表中的①、②、③位置填上相应的数据,并补全频率分布直方图,再根据频率分布直方图估计众数的值;
(2)若按身高分层抽样,抽取20人参加2011年庆元旦“步步高杯”全民健身运动其中有3名学生参加越野比赛,记这3名学生中“身高低于170Ccm”的人数为


某公司在过去几年内使用某种型号的灯管1000支,该公司对这些灯管的使用寿命(单位:小时)进行了统计,统计结果如下表所示:
(1)将各组的频率填入表中;
(2)根据上述统计结果,计算灯管使用寿命不足1500小时的频率;
(3)该公司某办公室新安装了这种型号的灯管3支,若将上述频率作为概率,试求至少有2支灯管的使用寿命不足1500小时的概率.
分组 | [500,900) | [900,1100) | [1100,1300) | [1300,1500) | [1500,1700) | [1700,1900) | [1900,+∞) |
频数 | 48 | 121 | 208 | 223 | 193 | 165 | 42 |
频率 | | | | | | | |
(1)将各组的频率填入表中;
(2)根据上述统计结果,计算灯管使用寿命不足1500小时的频率;
(3)该公司某办公室新安装了这种型号的灯管3支,若将上述频率作为概率,试求至少有2支灯管的使用寿命不足1500小时的概率.
某电视台为了宣传某沿江城市经济崛起的情况,特举办了一期有奖知识问答活动,活动对
岁的人群随机抽取
人回答问题“沿江城市带包括哪几个城市”,统计数据结果如下表:

(1)分别求出
、
、
的值;
(2)若以表中的频率近似看作各年龄组正确回答问题的概率,规定年龄在
内回答正确的得奖金
元,年龄在
内回答正确的得奖金
元.主持人随机请一家庭的两个成员(父亲
岁,孩子
岁)回答正确,求该家庭获得奖金
的分布列及数学期望(两人回答问题正确与否相互独立).


组数 | 分组 | 回答正确人数 | 占本组的频率 |
第![]() | ![]() | ![]() | ![]() |
第![]() | ![]() | ![]() | ![]() |
第![]() | ![]() | ![]() | ![]() |

(1)分别求出



(2)若以表中的频率近似看作各年龄组正确回答问题的概率,规定年龄在







某校高三一次月考之后,为了了解数学学科的学习情况,现从中随机抽出若干名学生此次的数学成绩,按成绩分组,制成右面频率分布表:

(1)若每组数据用该组区间的中点值(例如区间

(2)如果把表中的频率近似地看作每个学生在这次考试中取得相应成绩的概率,那么从所有学生中采用逐个抽取的方法任意抽取3名学生的成绩,并记成绩落在


①在三次抽取过程中至少有两次连续抽中成绩在

②

为了让学生等多的了解“数学史”知识,某中学高二年级举办了一次“追寻先哲的足迹,倾听数学的声音”的数学史知识竞赛活动,共有800名学生参加了这次竞赛,为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计,请你根据频率分布表解答下列问题:
(1)填充频率分布表中的空格.
(2)为鼓励学生更多的学生了解“数学史”知识,成绩不低于85分的同学能获奖,请估计在参加的800名学生中大概有多少名学生获奖?
(3)在上述统计数据的分析中有一项计算见算法流程图,求输出的S的值.

(1)填充频率分布表中的空格.
(2)为鼓励学生更多的学生了解“数学史”知识,成绩不低于85分的同学能获奖,请估计在参加的800名学生中大概有多少名学生获奖?
(3)在上述统计数据的分析中有一项计算见算法流程图,求输出的S的值.



对某电子元件进行寿命追踪调查,情况如下:
寿命/小时 | 100~200 | 200~300 | 300~400 | 400~500 | 500~600 |
个数 | 20 | 30 | 80 | 40 | 30 |
(1)完成频率分布表;
分组 | 频数 | 频率 |
100~200 | | |
200~300 | | |
300~400 | | |
400~500 | | |
500~600 | | |
合计 | | |
(2)画出频率分布直方图和频率分布折线图;
(3)估计电子元件寿命在100~400小时以内的频率;
从总体中随机抽出一个容量为20的样本,其数据的分组及各组的频数
如下表,试估计总体的中位数为________.
如下表,试估计总体的中位数为________.
分组 | [12,16) | [16,20) | [20,24) | [24,28) |
频数 | 4 | 8 | 5 | 3 |