某市对各老旧小区环境整治效果进行满意度测评,共有10000人参加这次测评(满分100分,得分全为整数).为了解本次测评分数情况,从中随机抽取了部分人的测评分数进行统计,整理见下表:
组别
分组
频数
频率
1

3
0.06
2

15
0.3
3

21

4

3
0.12
5


0.1
合计

1.00
 
(1)求出表中的值;
(2)若分数在80(含80分)以上表示对该项目“非常满意”,其中分数在90(含90分)以上表示“十分满意”,现从被抽取的“非常满意“人群中随机抽取2人,求至少有一人分数是“十分满意”的概率;
(3)请你根据样本数据估计全市的平均测评分数
当前题号:1 | 题型:解答题 | 难度:0.99
某种零件的质量指标值为整数,指标值为8时称为合格品,指标值为7或者9时称为准合格品,指标值为6或10时称为废品,某单位拥有一台制造该零件的机器,为了了解机器性能,随机抽取了该机器制造的100个零件,不同的质量指标值对应的零件个数如下表所示;
质量指标值
6
7
8
9
10
零件个数
6
18
60
12
4
 
使用该机器制造的一个零件成本为5元,合格品可以以每个元的价格出售给批发商,准合格品与废品无法岀售.
(1)估计该机器制造零件的质量指标值的平均数;
(2)若该单位接到一张订单,需要该零件2100个,为使此次交易获利达到1400元,估计的最小值;
(3)该单位引进了一台加工设备,每个零件花费2元可以被加工一次,加工结果会等可能出现以下三种情况:①质量指标值增加1,②质量指标值不变,③质量指标值减少1.已知每个零件最多可被加工一次,且该单位计划将所有准合格品逐一加工,在(2)的条件下,估计的最小值(精确到0.01) .
当前题号:2 | 题型:解答题 | 难度:0.99
某学校高二年级举办了一次数学史知识竞赛活动,共有名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为分)进行统计,统计结果见下表.请你根据频率分布表解答下列问题:

(1)填出频率分布表中的空格;
(2)为鼓励更多的学生了解“数学史”知识,成绩不低于分的同学能获奖,请估计在参加的名学生中大概有多少名学生获奖?
(3)在上述统计数据的分析中有一项计算见算法流程图,求输出的的值.
当前题号:3 | 题型:解答题 | 难度:0.99
追求人类与生存环境的和谐发展是中国特色社会主义生态文明的价值取向.为了改善空气质量,某城市环保局随机抽取了一年内100天的空气质量指数()的检测数据,结果统计如下:







空气质量


轻度污染
中度污染
重度污染
严重污染
天数
6
14
18
27
25
10
 
(1)从空气质量指数属于的天数中任取3天,求这3天中空气质量至少有2天为优的概率;
(2)已知某企业每天的经济损失(单位:元)与空气质量指数的关系式为,试估计该企业一个月(按30天计算)的经济损失的数学期望.
当前题号:4 | 题型:解答题 | 难度:0.99
某高中三年级有AB两个班,各有50名同学,这两个班参加能力测试,成绩统计结果如表:
AB班成绩的频数分布表
分组
[50,60)
[60,70)
[70,80)
[80,90)
[90,100]
A班频数
4
8
23
9
6
B班频数
7
12
13
10
8
 
(1)试估计AB两个班的平均分;
(2)统计学中常用M值作为衡量总体水平的一种指标,已知M与分数t的关系式为:M.
分别求这两个班学生成绩的M总值,并据此对这两个班的总体水平作简单评价.
当前题号:5 | 题型:解答题 | 难度:0.99
某校从高一新生开学摸底测试成绩中随机抽取人的成绩,按成绩分组并得各组频数如下(单位:分):
成绩分组
频数
频率
频率/组距

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 
合计
 
 
 
 

(1)列出频率分布表;
(2)画出频率分布直方图;
(3)估计本次考试成绩的中位数(精确到).
当前题号:6 | 题型:解答题 | 难度:0.99
一个频数分布表(样本容量为30)不小心被损坏了一部分,若样本中数据在上的频率为0.8,则估计样本在内的数据个数共为(   )
A.15B.16C.17D.19
当前题号:7 | 题型:单选题 | 难度:0.99
当前,以“立德树人”为目标的课程改革正在有序推进. 高中联招对初三毕业学生进行体育测试,是激发学生、家长和学校积极开展体育活动,保证学生健康成长的有效措施. 某地区2018年初中毕业生升学体育考试规定,考生必须参加立定跳远、掷实心球、1分钟跳绳三项测试,三项考试满分为50分,其中立定跳远15分,掷实心球15分,1分钟跳绳20分. 某学校在初三上学期开始时要掌握全年级学生每分钟跳绳的情况,随机抽取了100名学生进行测试,得到右边频率分布直方图,且规定计分规则如下表:


(1)现从样本的100名学生中,任意选取2人,求两人得分之和不大于33分的概率;
(2)若该校初三年级所有学生的跳绳个数服从正态分布,用样本数据的平均值和方差估计总体的期望和方差,已知样本方差 (各组数据用中点值代替). 根据往年经验,该校初三年级学生经过一年的训练,正式测试时每人每分钟跳绳个数都有明显进步,假设今年正式测试时每人每分钟跳绳个数比初三上学期开始时个数增加10个,现利用所得正态分布模型:
(ⅰ)预估全年级恰好有2000名学生时,正式测试每分钟跳182个以上的人数;(结果四舍五入到整数)
(ⅱ)若在全年级所有学生中任意选取3人,记正式测试时每分钟跳195个以上的人数为,求随机变量的分布列和期望. 附:若随机变量服从正态分布,则.
当前题号:8 | 题型:解答题 | 难度:0.99

某日用品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5.现从一批该日用
品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:
X
1
2
3
4
5
频率
a
0.2
0.4
b
c
 
(I)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,
求a,b,c的值;
(Ⅱ)在(I)的条件下,将等级系数为4的3件日用品记为x1,x2,x3,等级系数为5的2件
日用品记为y1,y2,现从x1,x2,x3,y1,y2这5件日用品中任取两件(假定每件日用品被取出
的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率
当前题号:9 | 题型:解答题 | 难度:0.99
响应“文化强国建设”号召,某市把社区图书阅览室建设增列为重要的民生工程.为了解市民阅读需求,随机抽取市民200人做调查,统计数据表明,样本中所有人每天用于阅读的时间(简称阅读用时)都不超过3小时,其频数分布表如下:(用时单位:小时)
用时分组






频数
10
20
50
60
40
20
 
(1)用样本估计总体,求该市市民每天阅读用时的平均值;
(2)为引导市民积极参与阅读,有关部门牵头举办市读书经验交流会,从这200人中筛选出男女代表各3名,其中有2名男代表和1名女代表喜欢古典文学.现从这6名代表中任选2名男代表和2名女代表参加交流会,求参加交流会的4名代表中,喜欢古典文学的男代表多于喜欢古典文学的女代表的概率.
当前题号:10 | 题型:解答题 | 难度:0.99